[go: up one dir, main page]

login
A014509
Truncation of Bernoulli number: floor(|B_2n|) * sign(B_2n).
3
1, 0, 0, 0, 0, 0, 0, 1, -7, 54, -529, 6192, -86580, 1425517, -27298231, 601580873, -15116315767, 429614643061, -13711655205088, 488332318973593, -19296579341940068, 841693047573682615, -40338071854059455413, 2115074863808199160560, -120866265222965259346027
OFFSET
0,9
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 810.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
abs(a(n)) = 2*(2*n)!/(2*Pi)^(2*n)*(1-sum(k=2, m, 1/k^(2n))+O(1/m^(2n))). - Benoit Cloitre, Jan 29 2003
MAPLE
f:= proc(n) local b; b:= bernoulli(2*n);
floor(abs(b))*signum(b)
end proc:
map(f, [$0..30]); # Robert Israel, Nov 12 2018
MATHEMATICA
Table[Sign@BernoulliB[2n] Floor@Abs@BernoulliB[2n], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 12 2015 *)
PROG
(PARI) a(n) = my(b=bernfrac(2*n)); floor(abs(b))*sign(b); \\ Michel Marcus, Nov 13 2018
CROSSREFS
Cf. A134825.
Sequence in context: A152108 A093742 A291703 * A228415 A084065 A200140
KEYWORD
sign
AUTHOR
EXTENSIONS
Entry revised by Franklin T. Adams-Watters, Sep 14 2005
STATUS
approved