A014117 and related OEIS sequences

Don Reble

2018 April

4

Contents

1	Introduction	1
2	Review and Preliminaries	1
3	P1 proof	2
4	P2 & P3 proofs	2
5	P4 & P7 proofs	2
6	P5 proof	3
7	P6 proof	3

A T(42,99) is prime

1 Introduction

From the OEIS[1]

```
%I A014117
%S 1,2,6,42,1806
%N Numbers n such that m^(n+1) == m (mod n)
holds for all m.
%O 1,2
%A David Broadhurst
```

Robert Israel and Thomas Ordowski note that A014117 is the

P1: squarefree terms of A124240

Max Alekseyev notes other properties of the sequence values:

- P2: for n > 1, n is an even squarefree number
- P3: The set P of all prime divisors of such n has this property: if p is in P, then p - 1 is a product of distinct elements of P. This set is

 $P = \{2, 3, 7, 43\}$, implying that the sequence is finite and complete.

- P4: n such that $\sum_{i=1}^{n} i^n \equiv 1 \mod n$
- P5: $\sum n/p \equiv -1 \mod n$, summing over primes psuch that $p \leq n$ and $(p-1) \mid n$
- P6: n such that n divides the denominator of the n-th Bernoulli number B_n (see A106741)

A further property from Derek Orr, noted in the equal sequence A242927:

P7: *n* such that $\sum_{i=k}^{k+n-1} i^n$ is prime for some *k*

2 Review and Preliminaries

Fermat's little theorem

If p is prime, $a^p \equiv a \mod p$; and $a^{p-1} \equiv 1$, unless $a \equiv 0$.

(This is almost the defining property of A014117, as Broadhurst notes.)

$\mathbf{Sums} \ \mathbf{of} \ i^n \bmod p$

Theorem 119 of [2] shows that for prime p,

$$\sum_{i=1}^{p-1} i^n \mod p \equiv \begin{cases} (p-1) \mid n \to p-1\\ (p-1) \not\mid n \to 0 \end{cases}$$

That sum could include the i = 0 term, using all *i*-values modulo *p*. Indeed, the index can run through any *p* consecutive values. For any non-negative *k*,

$$\sum_{i=0 \text{ or } 1}^{p-1} i^n \mod p \equiv \sum_{i=k}^{k+p-1} i^n$$

Prime reciprocal sums

Let p_i be the elements of a set of primes, let a be an integer, and let $b = \sum_i a/p_i$.

 \boldsymbol{b} is a rational number, and might be an integer.

The value $b \prod_{i} p_i = a \sum_{i} \frac{\prod_{i} p_i}{p_i}$ is an integer. For each *i*, the summed terms include

is an integer. For each i, the summed terms include i-1 multiples of p_i , and one non-multiple: the sum is not a multiple of any p_i .

So b is an integer just if each $p_i \mid a: \prod p_i \mid a$.

3 P1 proof

Let X be the set of integers x such that

- if prime $p \mid x$, then $(p-1) \mid x$;
- x is squarefree.

OEIS A124240 (mentioned in property P1) is defined by just the first property.

An *X*-prime is a prime that divides an element of set X.

Obviously $2 \in X$ and 2 is an X-prime.

Given a set P of X-primes, one can combine subsets to seek more. If $1 + \prod P$ is prime, it is an X-prime.

P	$1 + \prod P$	P	$1 + \prod P$
2	3	2,43	$87 = 3 \cdot 29$
2,3	7	$2,\!3,\!43$	$259 = 7 \cdot 37$
2,7	$15 = 3 \cdot 5$	2,7,43	$603 = 3 \cdot 3 \cdot 67$
2,3,7	43	2,3,7,43	$1807 = 13 \cdot 139$

The process finds 3, then 7, then 43; each other try finds a composite dead-end.

Consider the set Y of X-primes minus $\{2, 3, 7, 43\}$. If non-empty, Y has a least member y; y divides an element $x \in X$; $(y - 1) \mid x$; and y - 1 is a squarefree product of X-primes.

The prime divisors of y-1 are smaller than y, so not in Y: they are in $\{2, 3, 7, 43\}$. But those possibilities are exhausted. There is no such y, and Y is empty.

The X-primes are $\{2, 3, 7, 43\}$.

Furthermore,

43 | x implies that 42 | x (2,3,7 are divisors);

- 7 | x implies that 6 | x (2,3 are divisors);
- $3 \mid x \text{ implies that } 2 \mid x.$

 $X = \{1, 2, 6, 42, 1806\}.$

Property P1: defines the listed elements of A014117.

4 P2 & P3 proofs

Definition: n such that for all $m, m^{n+1} \equiv m \mod n$

Suppose that for some prime $p, p^2 \mid n$. Then $m^{n+1} \equiv m \mod p^2$.

This is true all for m, particularly when m = p: $p^{n+1} \equiv p \mod p^2$. No, $n+1 \ge 2$, so it's $0 \mod p$, and the supposition is false.

Theorem 2: n is squarefree.

Let p be a prime factor of n. Then $m^{n+1} \equiv m \mod p$. This is true for all m, particularly when m is a primitive root of p, whence $m^a \equiv m$ only when $a \equiv 1 \mod (p-1)$.

Therefore $n + 1 \equiv 1 \mod (p - 1)$, and $n \equiv 0$.

Theorem 3: if prime $p \mid n$, then $(p-1) \mid n$.

If n > 1, n is divisible by a prime.

If odd prime $q \mid n$, then $q - 1 \mid n$ and $2 \mid q - 1$. If even prime $2 \mid n$, then $2 \mid n$. n is even.

Property P2: For n > 1, n is an even squarefree number.

Theorems 2 and 3 together imply that A014117 is a subset of X. Calculations show that each value works.

Theorem 0: A014117 = 1, 2, 6, 42, 1806.

Property P3 is proven.

Property P1: can be a definition of A014117.

5 P4 & P7 proofs

Let
$$S(n) = \sum_{i=1}^{n} i^n$$
.

Let n be an integer such that $S(n) \equiv 1 \mod n$.

Let p be a prime dividing n: n = mp.

 $S(mp) \mod p = \sum_{i=1}^{mp} i^{mp} \mod p \equiv m \cdot \sum_{i=0}^{p-1} i^{mp}$, since each *i* can be replaced by *i* mod *p*, and each reduced *i*-value occurs *m* times. From section 2, this is congruent to $m \cdot (p-1)$ if $(p-1) \mid n$; or else 0.

So if $p \mid n$, then $n \equiv 0 \mod (p-1)$.

Theorem 4a: if prime $p \mid n$ then $(p-1) \mid n$.

Suppose that for some prime $p, p^2 \mid n: n = mp^2$. As before, $S(mp^2) \mod p \equiv mp \cdot \sum_{i=0}^{p-1} i^n$, which is divisible by p.

Theorem 4b: *n* is squarefree.

Theorems 4a and 4b together imply that $S \subseteq X$. Calculations show that each value works.

Property P4: can be a definition of A014117.

Let $T(n,k) = \sum_{i=k}^{k+n-1} i^n$

We have these data from Orr:

The first three T values are obviously prime. For the fourth, appendix A has a "P-1" proof.

Henceforth, let $n \geq 3$.

 $T(n,k) \ge T(n,0) > (n-1)^n > n.$

Let p be a prime dividing n: n = mp. As before, $T(mp,k) \mod p = \sum_{i=k}^{k+mp-1} i^{mp} \mod p \equiv$ $m \cdot \sum_{i=0}^{p-1} i^{mp}$, congruent to 0 if $(p-1) \not\mid n$.

If T(mp, k) is prime, it is too large to be the prime p: mp must be divisible by (p-1).

Theorem 7a: For $n \ge 3$: if $p \mid n$ and T(n,k) is prime, then $(p-1) \mid n$.

Suppose that for some prime p, $p^2 | n$: $n = mp^2$. As before, $T(mp^2, k) \mod p$ is a multiple of mp and of p, and is greater than p.

Theorem 7b: For $n \ge 3$: if $p^2 \mid n$ then T(n,k) is composite.

Theorem 7c: The set of *n*'s for which T(n,k) is prime is a subset of *X*.

T(1806, 3081) is a strong probable-prime. At least, there are no strong-witnesses in the first 100 primes.

Property P7: is probably true, and could be a definition of A014117.

6 P5 proof

The P5 summation, $\sum n/p \equiv -1 \mod n$, uses each prime p such that $p \leq n$ and $(p-1) \mid n$. The sum is an integer just if each $p \mid n$.

Let n > 1, and let p be a prime dividing n. To make the sum a non-multiple of p, we need a term that divides-out that prime: so $(p-1) \mid n$, and $p^2 \not\mid n$.

Therefore *n* is squarefree, and for each $p \mid n$,

 $(p-1) \mid n$. The set of such *n*'s is a subset of *X*, Calculations show that each value works. (For n = 1, the sum has no terms: take it to be 0 = n - 1.)

Property P5: can be a definition of A014117.

Furthermore, in each case $\sum n/p = n - 1$. That also can define A014117; the same proof applies.

7 P6 proof

2

5

Von Staudt's theorem, number 118 of [2], states

$$(-1)^k B_{2k} \equiv \sum 1/p \mod 1$$

summing over primes p such that $p-1 \mid 2k$. That determines the B_{2k} denominator.

Such denominators are therefore squarefree (as Hardy&Wright note).

H&W write β_k instead of B_k , and B_k instead of B_{2k} .

Let D_n be the denominator of B_n .

Of course n = 1 divides D_1 . For larger odd n, $B_n = 0/1$, and $n \not\mid 1$.

Let *n* be an even number that divides D_n , and let *p* be a prime dividing *n*: $p \mid D_n$. Therefore *p* is included in that summation, so (p-1)|n.

Theorem 6: Such an n is squarefree; and if prime $p \mid n$, then $(p-1) \mid n$.

Therefore $n \in X$; calculations show that each value works.

Property P6: can be a definition of A014117.

A T(42, 99) is prime

Here's a "P-1" proof for a = T(42, 99). Each base (for $x^{(p-1)/f}$) is 2, unless shown.

р			-	factor,						
a		2 - 3 - 5 - 7 - 13 - 53 - h - b								
b		$2-3-79-\mathrm{i-c}$								
с		2,5 - 521 - 1663 - 87557 - d								
d		2,3 - 17 - 1583 - f - e								
е		$2-7-11,5-56041-{ m g}$								
f		2,3 - 3,11 - 59 - 1252357 - 67373239								
g		2 - 3,3 - 3940499 - 96670153								
h		2 - 7 - 159673 - 1931953451								
i		2,5-2909-4345087								
	1									
a=	5	18750	71360	65560	08930	68812	01989			
		63767	29562	90824	50510	36490	50056			
		91739	06968	89594	20495	98772	64141			
b=						13836	07033			
		87001	00317	19250	01625	21525	38706			
		93348	24570	88594	01525	80203	88187			
c=		11	54681	54858	90651	83829	55328			
		50710	66466	88709	75798	69163	87767			
d=					76104	68365	53864			
		22033	86052	23524	42716	34821	42553			
e=			1183	51216	27356	19172	16803			
f=				29	86887	30059	10343			
g=				13	71343	10841	48493			
h=				4	31873	12473	41323			
i=					2	52797	16167			

Smaller primes are verified by trial-division.

References

- Neil Sloane, The Online Encyclopedia of Integer Sequences, http://oeis.org
- [2] G H Hardy, E M Wright, An Introduction to the Theory of Numbers 5th edition, Oxford University Press, 1983.