[go: up one dir, main page]

login
A013455
Expansion of e.g.f. sec(tan(x) - tanh(x)) (even-indexed coefficients only).
0
1, 0, 0, 160, 0, 261120, 19712000, 1538068480, 557613056000, 72297758064640, 26395258519552000, 9009548633571328000, 3030117499561574400000, 1720760994441294994472960, 838542041341593366036480000, 545911029456375473017632849920, 403794537898256808435202916352000
OFFSET
0,4
FORMULA
a(n) = (2n)! * [x^(2n)] sec(tan(x)-tanh(x)). - Alois P. Heinz, Aug 01 2022
EXAMPLE
sec(tan(x)-tanh(x)) = 1 + 160/6!*x^6 + 261120/10!*x^10 + 19712000/12!*x^12 ... .
MAPLE
a:= n-> (t-> t!*coeff(series(sec(tan(x)-tanh(x)), x, t+1), x, t))(2*n):
seq(a(n), n=0..16); # Alois P. Heinz, Aug 01 2022
CROSSREFS
Sequence in context: A213695 A224430 A013454 * A013465 A013466 A376899
KEYWORD
nonn
AUTHOR
Patrick Demichel (patrick.demichel(AT)hp.com)
STATUS
approved