[go: up one dir, main page]

login
Pisot sequence T(14,23), a(n)=[ a(n-1)^2/a(n-2) ].
2

%I #16 Mar 22 2016 12:26:12

%S 14,23,37,59,94,149,236,373,589,930,1468,2317,3657,5771,9107,14371,

%T 22677,35783,56463,89094,140583,221828,350025,552308,871492,1375135,

%U 2169837,3423803,5402445,8524559

%N Pisot sequence T(14,23), a(n)=[ a(n-1)^2/a(n-2) ].

%H Vincenzo Librandi, <a href="/A010922/b010922.txt">Table of n, a(n) for n = 0..1000</a>

%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305

%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

%t RecurrenceTable[{a[0]==14,a[1]==23,a[n]==Floor[a[n-1]^2/a[n-2]]}, a, {n,30}] (* _Harvey P. Dale_, Jan 20 2012 *)

%K nonn

%O 0,1

%A _Simon Plouffe_