[go: up one dir, main page]

login
A010470
Decimal expansion of square root of 13.
20
3, 6, 0, 5, 5, 5, 1, 2, 7, 5, 4, 6, 3, 9, 8, 9, 2, 9, 3, 1, 1, 9, 2, 2, 1, 2, 6, 7, 4, 7, 0, 4, 9, 5, 9, 4, 6, 2, 5, 1, 2, 9, 6, 5, 7, 3, 8, 4, 5, 2, 4, 6, 2, 1, 2, 7, 1, 0, 4, 5, 3, 0, 5, 6, 2, 2, 7, 1, 6, 6, 9, 4, 8, 2, 9, 3, 0, 1, 0, 4, 4, 5, 2, 0, 4, 6, 1, 9, 0, 8, 2, 0, 1, 8, 4, 9, 0, 7, 1
OFFSET
1,1
COMMENTS
Continued fraction expansion is 3 followed by {1, 1, 1, 1, 6} repeated. - Harry J. Smith, Jun 02 2009
The convergents to sqrt(13) are given in A041018/A041019. - Wolfdieter Lang, Nov 23 2017
The fundamental algebraic (integer) number in the field Q(sqrt(13)) is (1 + sqrt(13))/2 = A209927. - Wolfdieter Lang, Nov 21 2023
REFERENCES
Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.31.4, p. 201.
EXAMPLE
3.605551275463989293119221267470495946251296573845246212710453056227166...
MATHEMATICA
RealDigits[N[Sqrt[13], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 21 2011 *)
PROG
(PARI) default(realprecision, 20080); x=sqrt(13); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b010470.txt", n, " ", d)); \\ Harry J. Smith, Jun 02 2009
CROSSREFS
Cf. A010122 (continued fraction), A041018/A041019 (convergents), A248242 (Egyptian fraction), A171983 (Beatty sequence).
Cf. A020770 (reciprocal), A209927, A295330, A344069.
Sequence in context: A141703 A283193 A021739 * A359295 A181916 A077590
KEYWORD
nonn,easy,cons,changed
STATUS
approved