OFFSET
0,3
FORMULA
a(n)=sum(k=0..n, binomial(2*n+1,2*k+1)*(sum(i=0..k,(2*k+1-2*i)^(2*n-2*k)*binomial(2*k+1,i)))*(sum(j=1..2*k+1, j!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*k+1,j)))). - Vladimir Kruchinin, Jun 18 2011
MATHEMATICA
terms = 14;
egf = Tan[Cos[x]*x] + O[x]^(2 terms);
Partition[ CoefficientList[egf, x] Range[0, 2 terms - 1]!, 2][[All, 2]] (* Jean-François Alcover, Sep 24 2019 *)
PROG
(Maxima)
a(n):=sum(binomial(2*n+1, 2*k+1)*(sum((2*k+1-2*i)^(2*n-2*k)*binomial(2*k+1, i), i, 0, k))*(sum(j!*2^(1-j)*(-1)^(n+1+j)*stirling2(2*k+1, j), j, 1, 2*k+1)), k, 0, n); /* Vladimir Kruchinin, Jun 18 2011 */
CROSSREFS
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier Gérard, Mar 15 1997
STATUS
approved