[go: up one dir, main page]

login
A009403
Expansion of e.g.f. log(1 + tanh(x)^2), even powers only.
2
0, 2, -28, 992, -69088, 8110592, -1448424448, 366436769792, -124760831684608, 55014520738414592, -30501848618302701568, 20768078187214502100992, -17035983844637174375907328, 16570619538920401323784404992
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (-1)^(n+1) * 2^(4*n) * (2*n)! / (n * Pi^(2*n)). - Vaclav Kotesovec, Apr 20 2014
From G. C. Greubel, Jul 12 2022: (Start)
a(n) = 2*A024299(n).
a(n) = -4^n * (4^n - 2)*(4^n - 1)*Zeta(1-2*n), with a(0) = 0. (End)
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Log[1+Tanh[x]^2], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Aug 27 2013 *)
PROG
(Magma)
L:=RiemannZeta();
[0] cat [-Round(4^n*(4^n-2)*(4^n-1)*Evaluate(L, 1-2*n)): n in [1..20]]; // G. C. Greubel, Jul 12 2022
(SageMath) [0]+[-4^n*(4^n-2)*(4^n-1)*zeta(1-2*n) for n in (1..20)] # G. C. Greubel, Jul 12 2022
CROSSREFS
Cf. A024299.
Sequence in context: A352251 A012756 A362587 * A026944 A296464 A292806
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier GĂ©rard, Mar 15 1997
Previous Mathematica program replaced by Harvey P. Dale, Aug 27 2013
STATUS
approved