[go: up one dir, main page]

login
A009083
Expansion of e.g.f. cos(tan(x)^2) (even powers only).
2
1, 0, -12, -480, -22512, -1224960, -61017792, 1438993920, 1844639547648, 677206700482560, 225542012911531008, 76252348319434383360, 26581103125260630233088, 9309180001030233433374720
OFFSET
0,3
LINKS
FORMULA
a(n) = 2*Sum_{m=0..n} ((-1)^(m)*Sum_{j=4*m..2*n} binomial(j-1,4*m-1)*j!*2^(2*n-j-1)*(-1)^(n+j)*stirling2(2*n,j))/(2*m)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 11 2011
MATHEMATICA
With[{nmax = 60}, CoefficientList[Series[Cos[Tan[x]^2], {x, 0, nmax}], x]*Range[0, nmax]!][[1 ;; -1 ;; 2]] (* G. C. Greubel, Jul 24 2018 *)
PROG
(Maxima)
a(n):=2*sum(((-1)^(m)*sum(binomial(j-1, 4*m-1)*j!*2^(2*n-j-1)*(-1)^(n+j)*stirling2(2*n, j), j, 4*m, 2*n))/(2*m)!, m, 0, n); /* Vladimir Kruchinin, Jun 11 2011 */
(PARI) x='x+O('x^60); v=Vec(serlaplace(cos(tan(x)^2))); vector(#v\2, n, v[2*n-1]) \\ G. C. Greubel, Jul 24 2018
CROSSREFS
Sequence in context: A012395 A012687 A012467 * A012681 A009168 A012460
KEYWORD
sign
AUTHOR
EXTENSIONS
Extended with signs by Olivier GĂ©rard, Mar 15 1997
STATUS
approved