[go: up one dir, main page]

login
A007982
Number of non-Abelian metacyclic groups of order 2^n.
1
0, 0, 2, 5, 9, 15, 22, 32, 43, 57, 72, 91, 110, 134, 158, 187, 216, 251, 285, 326, 366, 413, 459, 513, 565, 626, 685, 753, 819, 895, 968, 1052, 1133, 1225, 1314, 1415, 1512, 1622, 1728, 1847, 1962, 2091, 2215, 2354, 2488, 2637, 2781, 2941, 3095, 3266, 3431
OFFSET
1,3
LINKS
Steven Liedahl, Enumeration of metacyclic p-groups, J. Algebra 186 (1996), no. 2, 436-446.
FORMULA
a(n) = A136184(n) - floor(n/2) - 1. - Eric M. Schmidt, Jan 08 2015
G.f.: -x^3*(x^8+x^7-x^6-x^5+2*x^4+2*x^3-3*x-2) / ((x-1)^4*(x+1)^2*(x^2+x+1)). - Colin Barker, Jan 12 2015
MATHEMATICA
LinearRecurrence[{1, 2, -1, -2, -1, 2, 1, -1}, {0, 0, 2, 5, 9, 15, 22, 32, 43, 57, 72}, 60] (* Harvey P. Dale, Oct 06 2016 *)
PROG
(PARI) concat([0, 0], Vec(-x^3*(x^8+x^7-x^6-x^5+2*x^4+2*x^3-3*x-2) / ((x-1)^4*(x+1)^2*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Jan 12 2015
CROSSREFS
Sequence in context: A152738 A022941 A320259 * A011904 A308265 A218914
KEYWORD
nonn,easy
AUTHOR
S. Liedahl
EXTENSIONS
a(2) corrected and sequence extended (using A136184) by Eric M. Schmidt, Jan 08 2015
STATUS
approved