OFFSET
0,3
COMMENTS
Number of paths of a walk on the integers, allowing steps of size 0, +1, and -1, which return to the starting point for the first time at time n. [David P. Sanders (dps(AT)fciencias.unam.mx), May 04 2009]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1 - sqrt(1 - 2*x - 3*x^2). - Michael Somos, Jun 14 2000
a(0)=0, a(1)=1, a(2)=2, then a(n) = (1/2) *(a(1)*a(n-1)+a(2)*a(n-2)+....+a(n-1)*a(1)). - Benoit Cloitre, Oct 24 2003
a(n) = 2^(1-n)*Sum_{k=1..n} (binomial(k,n-k)*a000108(k-1)*3^(n-k)), n>0. - Vladimir Kruchinin, Feb 05 2011
G.f.: 1-sqrt(1-2*x-3*(x^2)) = x/G(0) ; G(k) = 1-2*x/(1+x/(1+x/(1-2*x/(1-x/(2-x/G(k+1)))))) ; (continued fraction). - Sergei N. Gladkovskii, Dec 11 2011
a(n+2) = 2 * A001006(n). - Michael Somos, Jun 14 2000
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) for all n>0. - Michael Somos, Jan 25 2014
n*a(n) + (-2*n+3)*a(n-1) + *(-n+3)*a(n-2) = 0. - R. J. Mathar, Sep 06 2016
EXAMPLE
G.f. = x + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
MATHEMATICA
CoefficientList[Series[1-Sqrt[1-2x-3x^2], {x, 0, 40}], x] (* Harvey P. Dale, Dec 17 2012 *)
a[1]:=1; a[2]:=2; a[n_]:=a[n]=1/2 Sum[a[k] a[n-k], {k, 1, n-1}];
Join[{0}, Map[a, Range[24]]] (* Oliver Seipel, Nov 03 2024, after Schröder 1870 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(1 - sqrt(1 - 2*x - 3*x^2))) \\ G. C. Greubel, Feb 26 2017
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
David Dumas (dumas(AT)TCNJ.EDU)
EXTENSIONS
Name corrected by Michael Somos, Mar 23 2012
STATUS
approved