[go: up one dir, main page]

login
A007761
(n+1) * a(n+1) - 2 (68*n^2+68*n+27) * a(n) + 6 * n * (772*n^2+35) * a(n-1) - 2 * (2*n-1)^2 * (68*n^2-68*n+27) * a(n-2) + (2*n-1)^2 * (n-1) * (2*n-3)^2 * a(n-3) = 0.
1
1, 54, 6381, 1176900, 295843509, 94263721650, 36391089828249, 16506884910849480, 8603605199199386025, 5066519768097762780270, 3326644994941284848273925, 2409605195467508091244871820
OFFSET
0,2
COMMENTS
Is this always integral?
LINKS
MAPLE
a[0]:=1: a[1]:=54: a[2]:=6381: a[3]:=1176900: for n from 3 to 11 do a[n+1]:=(2*(68*n^2+68*n+27)*a[n]-6*n*(772*n^2+35)*a[n-1]+2*(2*n-1)^2* (68*n^2-68*n+27)*a[n-2]-(2*n-1)^2*(n-1)*(2*n-3)^2*a[n-3])/(n+1) od: seq(a[n], n=0..12); # Emeric Deutsch, Jul 20 2005
MATHEMATICA
a[0]:=1; a[1]:=54; a[2]:=6381; a[3]:=1176900; a[n_]:= a[n]= (2*(68*(n-1)^2 + 68*(n-1) +27)*a[n-1] -6*(n-1)*(772*(n-1)^2 +35)*a[n-2] +2*(2*n-3)^2*(68*(n- 1)^2 -68*(n-1) +27)*a[n-3] -(2*n-3)^2*(n-2)*(2*n-5)^2*a[n-4])/n; Table[a[n], {n, 0, 12}] (* G. C. Greubel, Mar 04 2020 *)
CROSSREFS
Sequence in context: A254620 A299862 A342893 * A178633 A369701 A299949
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Jul 20 2005
STATUS
approved