[go: up one dir, main page]

login
A007693
Primes p such that 6*p + 1 is also prime.
(Formerly M0656)
22
2, 3, 5, 7, 11, 13, 17, 23, 37, 47, 61, 73, 83, 101, 103, 107, 131, 137, 151, 173, 181, 233, 241, 257, 263, 271, 277, 283, 293, 311, 313, 331, 347, 367, 373, 397, 443, 461, 467, 503, 557, 577, 593, 601, 607, 641, 653, 661, 683, 727, 751, 761, 773, 787, 797, 853
OFFSET
1,1
REFERENCES
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 27983
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Andrew Granville, Sophie Germain's theorem for prime pairs p, 6p+1, J. Number Theory 27 (1987), no. 1, 63-72.
FORMULA
a(n) = (A051644(n)-1)/6.
MATHEMATICA
Select[Prime@Range[150], PrimeQ[6# + 1] &] (* Ray Chandler, Mar 14 2007 *)
PROG
(Magma) [n: n in [0..1000] | IsPrime(n) and IsPrime(6*n+1)]; // Vincenzo Librandi, Nov 18 2010
CROSSREFS
Prime terms of A024899.
Sequence in context: A268812 A283562 A152245 * A174048 A249644 A103144
KEYWORD
nonn,easy
EXTENSIONS
Extended by Ray Chandler, Mar 14 2007
STATUS
approved