OFFSET
1,2
REFERENCES
A. Brousseau, Tower of Hanoi with more pegs, J. Recreational Math., 8 (1975-1976), 169-176.
Cull, Paul; Ecklund, E. F. On the Towers of Hanoi and generalized Towers of Hanoi problems. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 229--238. MR0725883(85a:68059). - N. J. A. Sloane, Apr 08 2012
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wood, Towers of Brahma and Hanoi revisited, J. Recreational Math., 14 (1981), 17-24.
LINKS
S. Alejandre, Legend of Towers of Hanoi
J.-P. Allouche, Note on the cyclic towers of Hanoi, Theoret. Comput. Sci., 123 (1994), 3-7.
A. Brousseau, Tower of Hanoi with more pegs, J. Recreational Math 8.3 (1975-6), 169-176. (Annotated scanned copy)
Eric Weisstein's World of Mathematics, Towers of Hanoi
FORMULA
MATHEMATICA
terms = 100;
A056556 = Table[Table[m, {(m+1)(m+2)/2}], {m, 0, (6 terms)^(1/3) // Ceiling}] // Flatten;
a[n_] := With[{t = A056556[[n+1]]}, -1+(1+t(t-1)/2+n-t(t+1)(t+2)/6)*2^t];
Array[a, terms] (* Jean-François Alcover, Feb 28 2019 *)
PROG
(PARI) m=1; n=1; while(n<maxn, for(c=1, (m+1)*(m+2)/2, print1(-1+(1+m*(m-1)/2+n-m*(m+1)*(m+2)/6)*2^m, ", "); n++); m++) \\ K. Spage, Oct 23 2009
CROSSREFS
KEYWORD
nonn,changed
STATUS
approved