[go: up one dir, main page]

login
A007432
Moebius transform applied thrice to natural numbers.
(Formerly M0031)
2
1, -1, 0, 1, 2, 0, 4, 1, 3, -2, 8, 0, 10, -4, 0, 2, 14, -3, 16, 2, 0, -8, 20, 0, 13, -10, 8, 4, 26, 0, 28, 4, 0, -14, 8, 3, 34, -16, 0, 2, 38, 0, 40, 8, 6, -20, 44, 0, 31, -13, 0, 10, 50, -8, 16, 4, 0, -26, 56, 0, 58, -28, 12, 8, 20, 0, 64, 14
OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
FORMULA
Multiplicative with a(p^e) = Sum_{k=0..3} (-1)^k C(3,k)*p^(e-k)[e>=k];
Dirichlet g.f.: zeta(s-1)/zeta^3(s).
a(n) = Sum{d|n} tau_{-3}(d)*n/d = Sum{d|n} tau_{-2}(d)*phi(n/d), where tau_{-3} is A007428 and tau_{-2} is A007427. - Enrique Pérez Herrero, Jan 19 2013
Sum_{k=1..n} a(k) ~ 108 * n^2 / Pi^6. - Vaclav Kotesovec, Nov 04 2018
MATHEMATICA
a[p_, e_] := Sum[ (-1)^k*Binomial[3, k]*p^(e - k), {k, 0, Min[e, 3]}]; a[n_] := Times @@ Apply[a, FactorInteger[n], {1}]; a[1] = 1; Table[ a[n], {n, 1, 68}] (* Jean-François Alcover, Dec 28 2011, after formula *)
CROSSREFS
Cf. A007431.
Sequence in context: A347961 A020781 A327883 * A079124 A242071 A176910
KEYWORD
sign,easy,nice,mult
STATUS
approved