[go: up one dir, main page]

login
A007393
Number of strict 5th-order maximal independent sets in cycle graph.
(Formerly M4320)
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 0, 16, 0, 27, 0, 40, 7, 55, 23, 72, 50, 91, 90, 119, 145, 165, 217, 240, 308, 357, 427, 531, 592, 779, 832, 1120, 1189, 1582, 1720, 2211, 2499, 3082, 3619, 4312, 5201, 6075, 7412, 8619, 10494, 12285
OFFSET
1,14
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. Yanco and A. Bagchi, ``K-th order maximal independent sets in path and cycle graphs,'' J. Graph Theory, submitted, 1994.
FORMULA
Apparent g.f.: x^14*(-7+5*x^2)/((x^7+x^2-1)*(x-1)^2*(1+x)^2). [From R. J. Mathar, Oct 30 2009]
a(n) = A007388(n) - b(n) where b(1) = 0, b(2*n+1) = 2*n+1, b(2*n) = 2. - Sean A. Irvine, Jan 02 2018
CROSSREFS
Cf. A007388.
Sequence in context: A243773 A097604 A240816 * A348516 A245543 A225949
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Jan 02 2018
STATUS
approved