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Abstract. We show that the Ehrenfeucht-Mycielski sequence U is strongly balanced in
the following sense: for any finite word w of length k, the limiting frequency of w in U is
2−k.

1. The Ehrenfeucht-Mycielski Sequence

In [2] Ehrenfeucht and Mycielski introduced an infinite binary word based on avoiding
repetitions. More precisely, to construct the Ehrenfeucht-Mycielski (EM) sequence U , start
with a single bit 0. Suppose the first n bits Un = u1u2 . . . un have already been chosen. Find
the longest suffix v of Un that appears already in Un−1. Find the last occurrence of v in Un−1,
and let b be the first bit following that occurrence of v. Lastly, set un+1 = b, the complement
of b. It is understood that if there is no prior occurrence of any non-empty suffix the last bit
in the sequence is flipped. The resulting sequence starts like so:

01001101011100010000111101100101001001110

see also sequence A038219 in [7].
Since the Ehrenfeucht-Mycielski sequence is defined to avoid repetitions, one might suspect

that it contains all finite words as factors; in the reference the authors show that this is
indeed the case. The language pref(U) of all prefixes of U fails to be regular. Hence it
follows from the gap theorem in [1] that pref(U) cannot be context-free. On the other hand,
it is clear that a linear bounded automaton can recognize pref(U), so this language is context-
sensitive. Indeed, it follows from the results in section 2 that one can recognize prefixes of
the Ehrenfeucht-Mycielski word in logarithmic space and quadratic time using KMP. Much
better results can be achieved with a hash-based algorithm, see [6, 3]. The second reference
shows that under the assumption of near-monotonicity, see 1.2, one can generate a bit of the
sequence in amortized constant time. Moreover, only linear space is required to construct
an initial segment of the sequence, so that a simple laptop computer suffices to generate the
first billion bits of the sequence in less than an hour, see [3].

Storing the first billion bits in the obvious bit-packed format requires 125 million bytes,
and there is little hope to decrease this amount of space using data compression: the very
definition of the EM sequence foils standard algorithms. For example, the Lemple-Ziv-Welch
based gzip algorithm produces a “compressed” file of size 159,410 bytes from the first million
bits of the EM sequence. The Burrows-Wheeler type bzip2 algorithm even produces a file
of size 165,362 bytes.

Date: March 28, 2007.
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1.1. The Census Function. Unfortunately, the argument in [2] does not produce any
bounds on the position of the first occurrence of a word. A little computation produces a
rather surprising result: nearly all words of length k appear already among the first 2k bits
of the sequence. For example, for k = 20 only 4381 words are missing.

Thus, an initial segment of the EM sequence behaves almost like a de Bruijn sequence.
Define the cover cov(W ) of a word W , finite or infinite, to be the set of all its finite factors,
and covk(W ) = 2k ∩ cov(W ). The census function Ck(n) = |covk(Un)| for the EM sequence
increases initially at a rate of 1, and, after a short transition period, becomes constant at
value 2k. In figure 1, green stands for k = 9, blue for k = 10, and red for k = 11.
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Figure 1. The census function for k = 9, 10, 11.

1.2. Match Lengths. As with the census function, the length of the matches increases
in a very regular fashion. Indeed, in most places the length of the match at position n is
⌊log2 n⌋. In other words, most matches of length k are located in the interval [2k, 2k+1]. It
is immediate from the definitions that match length can never increase by more that 1 in a
single step, we will show that it also cannot decrease by more than 1 in a single step.

Let us say that λ is c-monotonic if ∀ t, s (λ(t + s) ≥ λ(t)− c). To visualize the changes in
match lengths, figure 2 collapses runs of matches of the same length into a single dot. The
plot uses the first 215 bits of the sequence and new maxima are indicated in red. The picture
suggests that the match length function is 2-monotonic, a fact that will be established in
section 3.

1.3. Match Positions. Similarly surprising is the position of the matches, i.e., the position
of the nearest occurrence of the suffix v in Un−1 associated with the next bit. The available
range of positions for the matches forms another staircase, with outliers. Figure 3 shows the
positions of the first 214 matches.

Note the fine structure of the blocks forming the staircase. The distribution of points in
the upper three quarters of the block is apparently random, but the bottom strip is divided
in half, and shows alternating bands of occupied and empty regions.
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Figure 2. Match lengths, condensed.
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Figure 3. Match positions up to 214.

Thus, the match positions form square blocks of size 2k, except for a few outliers, very
much like the first occurrences. However, unlike with the plot for first occurrences, the
positions of matches in the sequence is natural, and does not rely on some arbitrary ordering
of the words. The positions of the outliers are closely connected to match lengths.

1.4. Density. It is clear from the last section that the EM sequence has rather strong
regularity properties and is indeed far from random. In their paper [2] Ehrenfeucht and
Mycielski ask if their sequence is balanced in the sense that the limiting frequency of 0’s and
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1’s is 1/2. The following table shows the distribution of 0’s and 1’s in the first i · 108 bits,
for i = 1, . . . , 10. The deviation from equidistribution is reasonably close to the square root
of the number of bits.

i · 108 # 0 # 1
1 49996379 50003621
2 99993568 100006432
3 149998751 150001249
4 199995036 200004964
5 249995563 250004437
6 299992953 300007047
7 349998485 350001515
8 400003768 399996232
9 449989561 450010439
10 499988410 500011590

It was shown by [5] that the density is bounded away from 0. More precisely, McConnell
showed that in the limit the density of 0’s and 1’s in Un is at least 0.078. This result was
improved to a lower bound of 0.11 by [9], and more recently to 0.25 by [4].

For non-empty words w, x ∈ 2k write #wx for the number of occurrences of w in x, and
define the w-density of x to be

∆w(x) = #wx/ |x|

For w = 1 we speak of the density of x. The following result is conjectured in [2].

Theorem 1.1. Balance
In the limit, the density of Un is 1/2.

In fact we will prove a slightly stronger result.

Theorem 1.2. Strong Balance
For any non-empty word w the limit of ∆w(Un) is 2|w|.

The key step in proof is to show that the sequence of match lengths is rather smooth and
almost monotonic.

Lemma 1.1. Near Monotonicity
Any match of length k is followed only by matches of length at least k − 2.

Another interesting property of U is the rapid growth of the census function, simultane-
ously for all k.

Lemma 1.2. Growth Rate
Any word of length k appears in the first O(2k) bits of the sequence.

???
As a matter of fact, a bound of 2k+2 appears to suffice, but it is unclear what the growth

rate of the number of words that fail to appear already at time 2k+1 is. The last two
conjectures hold true for the first billion bits of the sequence.
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2. Recurrence and the Internal Clock

In the following section we will explore some of the basic properties of the EM sequence,
and in particular give a slightly more constructive proof of the fact that every finite word
occurs in the sequence. Unfortunately, no reasonable upper bound can be extracted from
our argument.

First, let us fix some terminology. For any n we write Un = u1u2 . . . un for the initial
segment of U of length n. Likewise, Un:k denotes the suffix of length k of Un, for k ≤ n.
From the definition of U , for any n ≥ 1 there is match u ∈ 2∗ that determines the (n + 1)st
bit in the sequence. We write µ(n) for u, and λ(n) for the length of u. Lastly, π(n) denotes
the position of the match µ(n). Here, by position we mean the location of the last letter of
the last occurrence of u in Un−1. It follows that un+1 = uπ(n)+1.

For any finite or infinite word W define the factor graph of W of order k to be the subgraph
of Bk traced by W . We write Bk(n) for the factor graph induced by Un. Likewise, Bk(n)
denotes the complement of Bk(n), i.e., the subgraph obtained by removing all the edges that
lie on the path traced by Un. We also assume that isolated vertices are removed. From the
definition of U we have the following fact.

Proposition 2.1. Alternation Principle
If a vertex u in Bk(n) appears twice in Un−1 it has out-degree 2.

As we will see, the condition for alternation is very nearly the same as having in-degree
2. It is often useful to consider the nodes in Bk that involve a subword v of length k − 1.
Clearly, there are exactly four such nodes, and they are connected by an alternating path of
the form:

a v −−−→ v b


y

x



v b ←−−− a v

We will refer to this subgraph as the zigzag of v. The nodes a v and a v are the sources
of the zigzag, and the other two nodes are the sinks. Zigzags are clearly edge-disjoint, and
every node except for 0k and 1k belongs to two zigzags, once as a source, and once as a
sink. Since Bk is the line graph of Bk−1, the zigzag of v corresponds to the node v and its 4
incident edges in Bk−1.

Zigzags are helpful in the analysis of the de Bruijn automata associated with one-dimensional
cellular automata, see [8]. Notably, they can be used to show that the size of the finite state
machines associated with iterated global maps decreases exponentially.

It follows from the last proposition that the path U can not touch a zigzag arbitrarily.

Proposition 2.2. No Merge Principle
The path U can not touch a zigzag in exactly two edges with the same target.

In particular v is a match if, and only if, all the nodes in the zigzag of v have been touched
by U .

2.1. The Second Coming. From the pictures it is apparent that the EM sequence is
closely associated with intervals [2k, 2k+1]. However, there are other natural stages in the
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construction of the sequence that are determined by the first repetition of the initial segments
of the sequence. They determine the point where the census function first deviates from
simple linear growth. First, a simple observation concerning the impossibility of repeated
matches.

Proposition 2.3. Some initial segment Un of U traces a simple cycle in Bk, anchored at
Uk. Correspondingly, the first match of length k is Uk.

Proof. Since U is infinite, it must touch some vertex in Bk twice. But by proposition 2.2
the first such vertex can only be Uk, the starting point of the cycle. 2

The proposition suggests to define Λ(t) = max
(
λ(s)

∣
∣ s ≤ t

)
to be the length of the

longest match up to time t. Thus, Λ is monotonically increasing and changes value only at
the second occurrence of an initial segment. We write τk for the time when Uk is encountered
for the second time. Note that we have the upper bound τk ≤ 2k + k − 1 since the longest
simple cycle in Bk has length 2k.

The fact that initial segments repeat provides an alternative proof of the fact that U
contains all finite words as factors, see [2].

Lemma 2.1. All finite words occur in U .

Proof. It follows from the last proposition that every factor of U occurs again in U . Now
choose n sufficiently large so that the factor graph of U has the form H = Bk(n). Since
every point in H is touched by U at least twice, it must have out-degree 2 by alternation.
But the only such subgraph of the de Bruijn graph is Bk itself. 2

Hence we can define C∗
k = min

(
t
∣
∣ Ck(t) = 2k

)
. Unfortunately, our argument yields only

an iterated exponential bound for C∗
k . At any rate, it follows that every word appears

infinitely often on U , and we can define τw
i , i ≥ 0, to be the position of the ith occurrence of

word w in U . As always, this is interpreted to mean the position of the last bit of w. Define
τk
i to be τUk

i , so τk
0 = k and τk

1 = τk. Also note that τk+1 = τk
2 + 1.

Proposition 2.4. Any word of length k other than Uk appears exactly once as a match. The
initial segment Uk appears exactly twice. Hence, the total number of matches of length k is
2k + 1.

Proof. First suppose u ∈ 2k is not an initial segment of U . By 2.1 a u and a u both
appear in U . The first such occurrences will have u as match. Clearly, from then on u
cannot appear again as a match. Likewise, by 2.1 any initial segment u = Uk must occur
twice as a match since there are occurrences u, a u and a u. As before, u cannot reappear as
a match later on in the sequence. 2

Thus, the map µ : N
+ → 2+ is almost a bijection: it is surjective, and 2-to-1 only at

initial segments.

2.2. Rounds and Irregular Words. Proposition 2.3 suggests that the construction of U
can be naturally decomposed into a sequence of of rounds during which Λ remains constant.
We will refer to the interval Rk = [τk, τk+1 − 1] ⊆ N as the k principal round. During Rk,
the maximum match function Λ is equal to k, but λ may well drop below k.
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Up to time t = τk+1−1 the EM sequence traces two cycles C0 and C1 in Bk, both anchored
at u = Uk.

C0

︷ ︸︸ ︷

u a . . . b u a . . . b u
︸ ︷︷ ︸

C1

a . . .

C0 is a simple cycle, and the two cycles are edge-disjoint. Let us call a subgraph of Bk
tame if all the nodes in the graph have degree 2 or 4. Note that the residual factor graph
Bk(t) = Bk − C0 − C1 is tame. The strongly connected components of Bk(t) are thus all
Eulerian.

• v • •

• um−1 u0 u1 u2 •

• • • •

When U later touches one of these components at u0, by necessity a degree 2 point, we
have the following situation: v = aw and u0 = wb so that

. . . a w b . . . a w b . . .

Thus, the first two occurrences of w are preceded by the same bit. Such words will be called
irregular and we will see shortly that the first three occurrences of any irregular word are of
the form

. . . a w b . . . a w b . . . a w b . . .

Initial segments Uk lack the preceding bit and are considered regular. It is easy to see that
all words 0k+1 and 1k, k ≥ 1 are irregular (whereas 0 is an initial segment). ???

There seem to be few irregular words; for example, there are 12 irregular words of length
10:

0000000000, 0010010010, 0010110101, 0011000000, 0011001100, 0011100000,

0111100001, 1001110010, 1010110000, 1110100111, 1111000111, 1111111111.

It is clear from the definitions that whenever v occurs as a match, all its prefixes must
already have occurred as matches. Because of irregular words, the situation for suffixes is
a slightly more complicated, but we will see that they too occur as matches with a slight
delay.

Our interest in irregular words stems from the fact that they are closely connected with
changes in match length. Within any principal round, λ can decrease only when an irregular
word is encountered for the second time, and will then correspondingly increase when the
same word is encountered for the third time, at which point it appears as a match. First,
increases in match length.

Lemma 2.2. Suppose the match length increases at time t, i.e. λ(t + 1) = λ(t) + 1, but Λ
does not increase at t. Then v = µ(t) is irregular and t = τ v

2 . Moreover, at time s = τ v
1 the

match length decreases: λ(s) > λ(s + 1).
7



Proof.

Set k = |v| and consider the edges incident upon v in Bk at time t. The dashed edge
indicates the last step.

au

au v wb

wb

Since the match length increases, both edges (v, wb) and (v, wb) must already lie on Ut.
But that means that the edge (au, v) must appear at least twice on Ut, and v is irregular.
Now consider the time s = τ v

1 of the second appearance. We must have s > r = τk
2 . But

the strongly connected component of v in the residual graph Bk(r) consists only of degree 2
and, possibly, degree 4 points; point v itself is in particular degree 2. As a consequence, U
must then trace a closed path in this component that ends at v at time t = τ v

2 . Lastly, the
match length at time s + 1 is k, but must have been larger than k at time s. 2

Thus all changes in match length inside of a principal round are associated with irregular
words. The lemma suggests the following definition. A minor round (of order k) is a pair
(r, s) of natural numbers, r ≤ s, with the property that λ(r − 1) ≥ k + 1, λ(t) ≤ k for all
t, r ≤ t ≤ s, and λ(s + 1) ≥ k + 1. Since trivially λ(t + 1) ≤ λ(t) + 1, the last condition is
equivalent to λ(s + 1) = k + 1.

Note that minor rounds are either disjoint or nested. Moreover, any minor round that
starts during a principal round must be contained in that principal round. We can now show
that match length never drops by more than 1 at a time.

Lemma 2.3. Let (r, s) be a minor round. Then λ(r − 1) = λ(r) + 1 = λ(s + 1).

Proof. From the definition, for any minor round (r, s) we have λ(s + 1)− λ(r − 1) ≤ 0.
Now consider the principal round for k. As we have seen, all minor rounds starting before
Rk are already finished at time τk

1 . But if any of the minor rounds during the k principal
round had λ(s + 1)− λ(r − 1) < 0 the match length at the end of Rk would be less than k,
contradicting the fact that the match length increases to k + 1 at the beginning of the next
principal round. 2

Hence, there cannot be gaps between two consecutive match length values.

Corollary 2.1. No-Gap
For all n, |λ(n)− λ(n + 1)| ≤ 1.

It is easy to see that λ cannot increase twice in a row.

Proposition 2.5. We cannot have λ(t) < λ(t + 1) < λ(t + 2).

Proof. Assume otherwise. Then we must have λ(t) = k because of some irregular word u
and λ(t + 1) = k + 1 because of an irregular word uc. More precisely, the first 3 occurrences
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of u must be of the form
. . . aub . . . aub . . . aubc

Since ub is also irregular there must be another occurrence of aub, contradiction. 2

2.3. Bordered Cycles. We say that a spike occurs at time t if λ(t−1) = λ(t)−1 = λ(t+1).
λ(t) is the height of the spike. Note that spikes can occur during the principal round when
the two principal cycles intersect. However, no spikes of height k are possible after the k
principal round.

Proposition 2.6. Spikes of height k can occur only before time τk+1.

Proof. Suppose ub ∈ 2k matches at time t ≥ τk+1. At time τk+1 the residucal graph Bk

becomes tame and ub must be a degree 2 or 4 point. It is easy to see that ub cannot be of
the form 0k or 1k. Consider the predecessor au of ub in Bk at time t− 1.

2

Lemma 2.4. At any time t ≥ τk+1 − 1 the residual factor graph Bk(t) is tame unless t lies
in a minor round.

Proof. As we have seen, Bk(t) is tame at time t = τk+1 − 1. At any later time tameness
can only be violated when the path traced by U touches the residual graph Bk(t). That can
only happen during a minor round. 2

Theorem 2.1. The match length function is nearly monotonic: λ(t′) ≥ λ(t) − 2 for all
t′ ≥ t.

Proof.

Suppose otherwise so that for some time t ≥ τk+3
1 there is a match of length k. We may

safely assume that U touches the residual graph Bk in a cycle C at time t. Let C ′ denote
the corresponding component in Bk+11 and let C ′′ be the corresponding component in Bk+2.

Let us first dispense with the case where the cycles are all self-loops. It is easy to see that
in this case the match lengths are λ(t + 1) = k, λ(t + 2) = k + 1 and λ(t + 3) = k + 2,
contradicting proposition

It is not hard to see that C ′ contains a cycle of degree 4 points that are bordered by degree
2 points.

We claim that C ′′ contains a cycle of degree 4 points that are bordered by degree 4 points.
This corona of degree 4 points is in turn bordered by degree 2 points.

To see this, note that the presence of a degree 4 neighbor of a corona point would imply
that a point au on C is adjacent to another degree 2 point ub in Bk (the factor graph, not
the residual). But then both au and ua are irregular, contradicting lemma ??.

2

3. Density and Near Monotonicity

The density of a set W ⊆ 2k is defined by

∆(W ) =
1

|W |

∑

x∈W

∆(x).
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To keep notation simple, we adopt the convention that a less-than or less-than-or-equal
sign in an expression indicates summation or union. E.g., we write

(
k

<p

)
for

∑

0≤i<p

(
k
i

)
.

We denote 2k,p the set of words in 2k of density p/k, i.e., all words containing exactly p
many 1’s. Thus,

∣
∣2k,p

∣
∣ =

(
k
p

)
. Clearly ∆(2k) = 1/2 by symmetry. A simple computation

shows that, perhaps somewhat counterintuitively, ∆(2k,≤k/2) = 1/2. Hence, by monotonicity
∆(2k,≤εk) = 1/2 for all 1/2 ≤ ε ≤ 1.

Now suppose W ⊆ 2k is a set of cardinality m. What is the least possible density of W ?
Clearly, a minimal density set W must have to form 2k,≤p ∪A where A ⊆ 2k,p+1. If m forces
p ≥ k/2, then asymptotically the density of W is 1/2. Indeed, we will see that m = Ω(2k)
suffices. Let 0 ≤ p ≤ k. From the definition of density we have

∆(2k,≤p) =

∑

i≤p

(
k
i

)
i/k

(
k
≤p

)

= 1/2−

(

4

(
k−1
<p

)

(
k−1

p

) + 2

)−1

Now suppose p = ⌊εk⌋ + c where c ∈ Z is constant. As long as 1/2 ≤ ε ≤ 1 we obtain
density 1/2 in the limit. However, this is as far as one can go.

Lemma 3.1. Let 0 ≤ ε < 1/2 and p = ⌊εk⌋+c where c ∈ Z is constant. Then limk→∞

(
k

<p

)
/
(

k
p

)
=

ε/(1− 2ε).

Proof. For the sake of brevity we write γ =
( k

<p)
(k

p)
. First note that the density of 2k,≤εk is

clearly bounded from above by ε. Since ∆(2k,≤εk) = γ
2γ+1

it follows that γ ≤ ε
1−2ε

.
For the opposite direction we rewrite the individual quotients of binomial coefficients in

terms of Pochhammer symbols as
(

k
p−i

)

(
k
p

) =
(p− i + 1)i

(k − p + 1)i

Hence the limit of
(

k
p−i

)
/
(

k
p

)
as k goes to infinity is

(
ε

1−ε

)i
. Now consider a partial sum

∑n
i=1

(
k

p−i

)
/
(

k
p

)
≤ γ where n is fixed. Then

n∑

i=1

(
k

p−i

)

(
k
p

) −→
n∑

i=1

( ε

1− ε

)i
=

ε

1− 2ε

(

1−
( ε

1− ε

)n
)

as k goes to infinity. But then limk→∞ γ ≥ ε
1−2ε

.
Thus, in the limit γ = ε

1−2ε
. 2

Corollary 3.1. Let 0 ≤ δ ≤ 1/2. Then limk→∞ ∆(2k,≤δk) = δ.

The definition of density extends naturally to multisets A, B ⊆ 2k via

∆(A + B) =
|A|∆(A) + |B|∆(B)

|A + B|
.
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Assuming near monotonicity, we can now establish balance of U by calculating the limiting
density at times τk. Thus, it seems that λ is 2-monotonic, but the argument below works
for any constant c.

Theorem 3.1. If λ is c-monotonic for some constant c, then the Ehrenfeucht-Mycielski
sequence is strongly balanced.

Proof. Assume otherwise; by symmetry we only have to consider the case where for
infinitely many t we have ∆(Ut) < δ0 < 1/2.

Let τk+c ≤ t < τk+c+1 and consider the multiset W = covk(Ut). For t sufficiently large
∆(W ) < δ0. Since all matches after t have length at least k by our assumption, certainly
2k ⊆W . Since all words of length k + c + 1 on Ut are unique, there is a constant bounding
the multiplicities of x ∈ 2k in W and we can write W = 2k + V where ∀x ∈ 2k (V (x) ≤ d).
Let δ = ∆(V ) and m = |V |, so that

δ0 > ∆(W ) =
2k · 1/2 + m · δ

2k + m
.

It follows that 2k−1(1− 2δ0) ≤ m(δ0 − δ) ≤ m so that m = Ω(2k).
On the other hand, we must have δ0 ≥ ∆(V ) ≥ ∆(d · 2k,≤p) = ∆(2k,≤p). To see this, note

that if for some x ∈ 2k, q/k = ∆(x) < ∆(2k+d·2k,<q) then 2k+d·2k,≤q minimizes the density
of all multisets with multiplicities bounded by d that include x. From the last corollary we
get p ≤ δ0k. Using Sterling approximation we see that the cardinality m is bounded by

d
(

k
≤δ0k

)
≤ d + dδ0k

(
k

δ0k

)
≈ d + d

√
δ0k

2π(1−δ0)
2kH(δ0) where H(x) = −x lg x − (1 − x) lg(1 − x)

is the binary entropy function over the interval [0, 1]. It is well-known that H is symmetric
about x = 1/2 and concave, with maximum H(1/2) = 1. Hence 2H(δ0) < 2, contradicting
our previous lower bound. Hence, the density of W approaches 1/2, as required. 2

Since we have already shown that λ is 2-monotonic we obtain theorem 1.2 as an immediate
corollary.

4. Open Problems

The 2-monotonicity of λ also implies that C∗
k = O(2k).

We do not know what the constants are, in particular whether C∗
k ≤ 2k+2.

The behavior of the match position function is not entirely clear.

Needless to say, the construction of the EM sequence easily generalizes to arbitrary pre-
fixes: start with a word w, and then attach new bits at the end according to the same rules
as for the standard sequence. It seems that all results and conjectures here seem to carry
over, mutatis mutandis, to these generalize EM sequences. In particular, they all appear to
have limiting density 1/2.
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