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Abstract

The vertices of the graph Vn [?] are maximal intersecting families of
subsets of an n-element set (i.e. strong simple games). Two families F ,G
are joined by an edge if |F \ G| = 1. Various properties of Vn are de-
duced here. Aut(Vn) = Sn. Thus, as a graph, Vn encodes all information
about maximal intersecting families. The diameter of Vn is 2n−2. Thus,
no two strong simple games are negatively correlated in a random voting
environment. Three operations are defined set theoretically, and char-
acterized in terms of their graph theoretic properties: a unary inclusion
ι : Vn−1 → Vn, a binary choice function χ : Vn−1 × Vn−1 → Vn, and a
trinary median function m : Vn × Vn × Vn → Vn.
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1 Introduction

A family F of subsets of an n-element set X is called intersecting if every two
members have a nonempty intersection. An intersecting family can have at
most 2n−1 members, since it may not contain both a set and its compliment.
When one attains this bound, it is called a maximal intersecting family. Every
intersecting family is an intersection of maximal intersecting families.

Every maximal intersecting family is an upset. That is to say, it is closed
under taking supersets.

Strong simple games are also called voting schemes (or social choice func-
tions) [?] since they allow a group of people to decide unambiguously between
two choices, say 0 and 1. If G is a strong simple game and A is the set of voters
who vote for 1, define the choice function g by g(A) = 1 if A ∈ G and 0 other-
wise. This decision is a ipsodual monotonic function of the expressed preference
of the voters in that g(X \ A) = 1 − g(A) and g(B) ≥ g(A) when B ⊇ A. [?]
Monotonicity guarantees that it is never in a voter’s interest to falsify her true
preferences, and duality guarantees that the result of the vote is well define and
independent of which outcome we call 0 and which 1.

Each rediscovery of a theory gives birth to alternate notation and termi-
nology. [?, ?, ?, ?, ?, ?] We mainly use the language of voting schemes and
games. X is viewed as a set of players or voters. A coalition A ⊆ X is said to
be winning if A ∈ G, and it said to be blocking if X \ A 6∈ G. We assume that
if a coalition A wins, then all larger coalitions B ⊇ A also win.

A game is considered strong if blocking implies winning. A game is con-
sidered simple if winning implies blocking. Thus, simple games are exactly
intersecting upsets, and strong simple games are exactly maximal intersecting
families of sets.

Strong simple games are also called voting schemes (or social choice func-
tions) since they allow a group of people to decide unambiguously between two
choices. This decision is a ipsodual monotonic function of the expressed prefer-
ence of the voters. Monotonicity guarantees that it is never in a voter’s interest
to falsify her true preferences, and duality guarantees that the result of the vote
is well defined.

Two important maximal intersecting families are the dictatorship Da =
{A ⊆ X : a ∈ A} and, when X has odd cardinality, the democracy M consisting
of all sets containing a majority of the voters.
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2 Graph

Two maximal intersecting families F and G are said to be adjacent if and only
if |F \ G| = 1. We write F ∼ G.

Each maximal intersecting family contains exactly one member of each
pair of complementary subsets of X. Thus, the relation ∼ is symmetric, for if
F \ G = {A} then G \ F = {X \ A}.

In this situation, A is a minimal member of F (no subset of A is a member)
and X \ A is minimal in G. Conversely, when A is minimal in F , F \ {A} ∪
{X \A}, the family obtained by switching A with its compliment, is a maximal
intersecting family adjacent to F [?, Lemma 2.3]. So switching allows one to
compute all the neighbors of a given maximal intersecting family. Repeated
switching can transform any maximal intersecting family to any other.

Thus, the set of maximal intersecting families of subsets of X =
{1, 2, . . . , n} together with the relation ∼ defines an undirected connected graph
denoted Vn. (See table ?? for n < 5. See [?] for the key features of V6.)

The distance between two maximal intersecting families is given by |F\G| =
1
2 |F ⊕ G| where F ⊕ G denotes the symmetric difference of the sets F and G.
When viewed as voting schemes, the distances between maximal intersecting
families of sets gives a measure of the size of “constitutional reforms.” We will
also see a probabilistic interpretation of the distance.

The graph Vn and the switching operation were first considered in [?].

In a graph G, let the distance dist (v, w) denote the length (number of
edges) in the shortest path from vertex v to vertex w. Let the interval I(v, w)
denote the subgraph of G defined by the union of all paths of length dist (v, w)
between v and w.

Note that the maximal intersecting intersecting families in the interval
I(F ,G) are exactly those that arise by starting at either F or G and never
switching a set A ∈ F ∪ G with its complement.

3 Inclusion

Given X ⊆ Y , it is possible to extend a maximal intersecting family F on X to
a maximal intersecting family ι(F) on Y .

ι(F) = {B ⊆ Y : B ∩ X ∈ F}.
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Table 1: Vn, (n = 1, 2, 3, 4, 5)

.
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If we interpret F as a voting scheme, then ι(F) is a voting scheme with
additional dummy voters who have no possible affect on the result. (Voters who
do not belong to any minimal winning coalitions are called dummies.)

In particular, ι defines an injection between Vn−1 and Vn. ι is not a homo-
morphism, since each edge of Vn−1 is “bisected” in Vn; that is to say, if F ∼ G
in Vn−1, then there is a unique maximal intersecting family H in Vn such that
ιF ∼ H ∼ ιG.

By viewing each member of X in turn as the “last” member, we can find
n “bisected” copies of Vn−1 in Vn. (One is highlighted in table ??.) The inter-
section of each pair forms a doubly “bisected” copy of Vn−2.

Consider the collection of all intersecting upsets of subsets of {1, 2, ..., n}
(i.e., simple games). Define F ∼ G if their symmetric difference is a singleton.
This gives a bipartite graph Wn with partition according to the parity of |F|.
The distance between two intersecting upsets is given by |F ⊕G|. The maximal
intersecting families are in this graph but the distance between two in Wn is
twice that in Vn.

In fact, Wn−1 is isomorphic to Vn. The isomorphism is given by

κ(F) = F ∪ nF∗

where nF = {n∪A : A ∈ F} and F∗ = {{1, 2, . . . , n − 1} \ A : A 6∈ F} is the set
of blocking coalitions for the simple game F . ι = κ when restricted to maximal
intersecting families, since F = F∗ for maximal intersecting families.

Note that ι : Wn−1 → Wn.

4 Choice Function

A move in a sequential game is a choice by one of the players between two
or more possibilities. Without loss of generality, we can consider only choice
between two possibilities, since choices between a large number of possibilities
can be made via iterated binary choices.

Thus, given two maximal intersecting families of sets F and G corre-
sponding to games F and G, we ask what maximal intersecting family of sets
H = χa(F ,G) corresponds to the game in which the player a is presented with
a choice between playing F and playing G. Obviously, A ⊆ X wins H if it wins
both F and G. Moreover, if a ∈ A ⊆ X, then A can win H even if it wins only
one of F and G.

χa(F ,G) = (F ∩ G) ∪ {A ∈ F ∪ G : a ∈ A}.

χa is a binary operator on Vn.

4



Proposition 1 1. χa(F ,G) is a maximal intersecting family.

2. χa(F ,G) ∈ I(F ,G). In other words, χa(F ,G) is on a minimal path from
F to G.

dist (F ,G) = dist (F , χa(F ,G)) + dist (χa(F ,G),G) .

Moreover, χa(F ,G) is the unique H ∈ I(F ,G) which minimizes
dist (H,Da).

3. Associativity
χa(χa(F ,G),H) = χa(F , χa(G,H)).

4. Commutativity
χa(F ,G) = χa(G,F).

5. Idempotence
χa(F ,F) = F .

Proof: 1. Let a ∈ A and B = X \A. If A 6∈ χa(F ,G), then A 6∈ F and A 6∈ G. Thus,
B ∈ F and B ∈ G, so B ∈ χa(F ,G). Conversely, if A ∈ χa(F ,G), then
A ∈ F or A ∈ G. In either case, B 6∈ χa(F ,G).

2. χa(F ,G) contains all coalitions which are members of both F and G. When
F contains a coalition, and G contains its compliment, χa(F ,G) contains
the coalition to which a belongs.

3. In either case, we have the maximal intersecting family which takes from
either complementary pair the one containing a unless the complement is
in all three of F , G, and G.2

Due to the last three properties, we can think of χa as operating on sets
of distinct games. From each complementary pair of coalitions, it takes the one
containing a unless the other coalition wins every one of the games. If we take
a = n and κ : Wn−1 → Vn as before then

χn{F1, . . . ,Fk} = κ

(

k
⋂

i=1

κ−1Fi

)

If we focus our attention on maximal intersecting families in which a = n is
a dummy, then we have a map from sets of strong simple games on {1, 2, . . . , n−
1} into Vn. Suppose S ⊆ Vn−1 is a set of strong simple games. Then

χ(S) =

(

⋂

F∈S

F

)

⋃

(

⋃

F∈S

nF

)

= χn ({ιF : F ∈ S}) .
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Also, χ{F} = ιF , and as a binary operation χ : Vn−1 × Vn−1 → Vn,

χ(F ,G) = (F ∩ G) ∪ nF ∪ nG.

Not only is χ(F ,G) on a path between ι(F) and ι(G) as implied by Propo-
sition ??, but indeed, it is the mid-point of such a path.

Proposition 2 dist (F ,G) = dist (ι(F), χ(F ,G)) = dist (χ(F ,G), ι(G)) .

Proof: χ(F ,G) \ ι(G) = F \ G.2

In the case of F ∼ G, χ(F ,G) is the unique “bisection” point between ι(F)
and ι(G). However, in general, this is not the case. (See for example V4 in table
??.)

5 Median

We now will define a trinary operator m : Vn × Vn × Vn → Vn There are several
possible motivations for the definition of this operator.

First, let F , G, and H be maximal intersecting families of sets and interpret
them as voting schemes. Now, vote once using each. The three results are then
combined by majority rule, best two out of three. The resulting voting scheme
is called the median m(F ,G,H), since it corresponds to the median operation
of lattice theory when F , G, and H are thought of as ipsodual elements of the
free distributive lattice. In other words,

m(F ,G,H) = (F ∩ G) ∪ (F ∩H) ∪ (G ∩ H) = (F ∪ G) ∩ (F ∪H) ∩ (G ∪ H).

Proposition 3 If F ,G,H are maximal intersecting families, then so is their
median m(F ,G,H).

Proof: Clearly this is a family which contains one from each pair of com-
plementary sets. It is intersecting since any two members are both members of
at least one of the three families F , G, and H.2

Alternate Proof: As above, let ∗ denote the natural duality relation in the
free distributive lattice. Namely, F∗ = 2X \ {X \ A : A ∈ F} — the family
of blocking coalitions for F . Then a maximal intersecting family is exactly a
self-dual upset — an ipsodual member of the free distributive lattice.

m(F ,G,H)∗ = ((F ∩ G) ∪ (F ∩ G) ∪ (G ∩H))
∗

= (F∗ ∪ G∗) ∩ (F∗ ∪ G∗) ∩ (G∗ ∪H∗)

= m(F∗,G∗,H∗)

= m(F ,G,H).2

Finally, we have the following graph theoretic characterization of the me-
dian.
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Proposition 4 Suppose F ,G,H ∈ Vn. Then m(F ,G,H) is the unique I ∈ Vn

such that dist (F , I) + dist (G, I) + dist (H, I) is minimal.

Proof: Note that the choice we make from each complimentary pair con-
tributes 0, 1, 2, or 3 to the sum independent of the other complimentary pairs.
To minimize the sum, it suffices to minimize each contribution independently.2

Note that the median operation defined above correspond to the usual
graph theoretic median operation. The classical median of three vertices s, t, u ∈
G is defined to be the following set which may be empty or may have several
members M(s, t, u) = I(s, t) ∩ I(s, u) ∩ I(t, u).

Proposition 5 Let F ,G,H ∈ Vn. Then M(F ,G,H) is equal to the one element
set {m(F ,G,H)}.

Proof: All graphs obey the triangle inequality dist (u, z) + dist (z, v) ≤
dist (u, v) with equality if and only if z ∈ I(u, v). Hence, 2(dist (u, z) +
dist (v, z) + dist (w, z)) ≤ dist (u, v) + dist (u,w) + dist (v, w) with equality if
and only if z ∈ M(u, v, w). The result now follows from proposition ??.2

A permutation π of X can be naturally associated with the following au-
tomorphism of Vn

πF = {πA : A ∈ F}

where πA = {πa : a ∈ A}. Such automorphisms are called inner automorphisms,
since they result in a natural way from automorphisms of the underlying set.

The non-existence of “outer” automorphisms is a non-trivial question. For
example, the symmetric group of order six does in fact possess outer automor-
phisms [?]. However, the graph of maximal intersecting families of sets does not
have outer automorphisms.

Theorem 6 There are exactly n! automorphisms of the graph Vn. They are the
automorphisms associated with the n! permutations of the set X.

Proof: F ∈ Vn is of degree one (i.e. it has one neighbor) if and only if it
has a unique minimal member. The dictatorships Da = {A ⊆ X : a ∈ A} are
thus the only maximal intersecting families of degree 1. They are permuted in
all n! ways by the inner automorphisms of Vn.

It suffices to show that the identity is the only automorphism of Vn fixing
all dictatorships. By proposition ??, the median is a graph theoretic property.
Moreover, by Monjardet’s Theorem [?, ?] all maximal intersecting families can
be written in terms of the median operation m and the n dictatorships Da.2
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Alternate Proof: By part 2 of proposition ??, χa can be defined graph
theoretically. Moreover, all maximal intersecting families can be represented as
multi-player games. (For example, players take turns voting yes or no, and the
first player on the unique winning coalition is declared “winner.”) Its binary
game-tree representation indicates how the family can be written in terms of χa

and Da. [?] 2

The first proof is in reality a special case of the second given the following
relationship between χa and m:

Proposition 7 χa(F ,G) = m(F ,G,Da).

Proof:

m(F ,G,Da) = (F ∩ G) ∪ (F ∩ Da) ∪ (G ∩ Da)

= (F ∩ G) ∪ aF ∪ aG.2

6 Probability

Distances in the graph Vn admit a probabilistic interpretation [?, §6].

Interpret all maximal intersecting subsets F of X as voting schemes. Sup-
pose additionally that all voters a ∈ X vote independently “yes” or “no” each
with probability 1/2. That is, choose a coalition at random using the uniform
distribution on the 2n possibilities. Consider F (∼ F) to be the event that the
chosen coalition is winning (losing) in the game F . Since F has 2n−1 winning
coalitions, the probability of “success” is P(F) = 1/2.

Now, consider two maximal intersecting families of sets F and G. What
is the conditional probability of vote G succeeding given that F occurs? By
definition,

P(G|F) = P(F ∩ G)/P(F)

= 21−n|F ∩ G|

= 1 − 21−n|F \ G|

= 1 − 21−ndist (F ,G)

Thus, maximal intersecting families which are close to each other in Vn are
highly correlated. (In the extreme, P(F|F) = 1, since dist (F ,F) = 0.)

By the above, P(F|G) = P(G|F). Also, P(F ,G) = P(ι(F), ι(G)). Thus,
1 − P(F ,G) (unlike dist (F ,G)) is a measure of proximity preserved by the
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embeddings ι. Of course, 1 − P(F ,G) = dist (F ,G)/2n−1 can be viewed as a
normalized distance.

We shall now show that there are no negatively correlated maximally inter-
secting families of sets. In other words, P(F|G) ≥ P(F) = 1/2, or equivalently,
dist (F ,G) ≤ 2n−2 or |F ∩ G| ≥ 2n−2. One proof is a consequence of [?, ?,
p. 104]. An alternate proof due to Kleitman [?, ?, p. 87] can be adapted to
identify exactly when two maximal intersecting families of sets are independent.
In other words, when does P(F|G) = 1/2?

Theorem 8 Let F and G be upsets in the algebra of subsets of X =
{1, 2, . . . , n}. Then

|F||G| ≤ 2n|F ∩ G|

with equality in the case that every element of X is a dummy in one or both of
of F and G.

Proof: By induction on n. Decompose

F = nF1 ∪ F2 and G = nG1 ∪ G2

where Fi and Gi are upsets in the algebra of subsets of {1, 2, . . . , n − 1} and
F2 ⊆ F1 and G2 ⊆ G1. Now, let αi = |Fi| and βi = |Gi|. Let x = α1 − α2 ≥ 0,
and y = β1 − β2 ≥ 0.

|F||G| = (α1 + α2)(β1 + β2)

= 2(α1β1 + α2β2) − xy

≤ 2(α1β1 + α2β2)

≤ 2(2n−1|F1 ∩ G1| + 2n−1|F2 ∩ G2|)

= 2n(|nF1 ∩ nG1| + |F2 ∩ G2|)

= 2n|F ∩ G|.

For equality to hold, xy must be 0, and we must have equality at n − 1. Thus,
each of 1, 2, . . . , n − 1 must be a dummy in one or both upsets. x = 0 means
that n is a dummy in F . y = 0 means that n is a dummy in G.2

By induction, we can characterize when equality holds in the following
inequality conjectured by Erdös and proved by Kleitman. [?, ?, p. 90]

Corollary 9 The intersection of k maximal intersecting families of X has at
least 2n−k members with equality only when their sets of non-dummies are
disjoint.2
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7 Radius and Diameter

The diameter of a graph G is the greatest distance attainable in the graph,

δG = max
v,w∈G

dist (v, w) .

Its perimeter is the set of points v attaining this maximum for some w.

Corollary 10 For n > 1, δVn
= 2n−1. The perimeter of Vn consists of those

maximal intersecting families of sets with at least one dummy.2

Thus, ι(Vn−1) lies on the perimeter of Vn, and conversely each family on the
perimeter of Vn is isomorphic to a family ι(F) where F ∈ Vn−1.

Let a ∈ X be a voter. The power dF (a) of a in F is defined to be the
number of sets A ∈ F such that a ∈ A. It is a good measure of power, since it
is directly related to the distance to the dictatorship by a,

dF (a) = 2n−1 − dist (F ,Da) .

The probability of success, given that a votes “yes”, increases linearly (from 1/2
to 1) with the power of a, P(F|Da) = 21−ndF (a). Dictatorship by a corresponds
to the maximal power 2n−1, whereas minimal power 2n−2 is achieved if a is a
dummy.

The partity of dF (a) yields a proper coloring of Vn. Thus, Vn is bipartite.

A voting scheme F is defined to be regular if every voter has the same
strength. A sufficient condition for regularity is that the scheme be transitive—
i.e., that a transitive group of permutations fix F .

The radius of a graph G is

ρG = min
v∈G

max
w∈G

dist (v, w) .

The center of a graph is the set of vertices v attaining this minimum.

The scope of our next main result (theorem ??) depends in part on the
validity of Chvátal’s conjecture [?, ?].

Conjecture 11 Let S be a downset and consider all intersecting subfamilies
T ⊆ S. Among those with the largest cardinality is a family T which is the
intersection of S and a dictatorship.

Or equivalently, for every upset U there is a dictatorship among the maxi-
mum intersecting families F which minimize |U ∩ F|.
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For short, we will say that Chvátal’s conjecture holds for U when there is a
dictatorship among the maximal intersecting families with minimal size inter-
section with it. Thus, by theorem ??, Chvátal’s conjecture is true for every
intersecting family with a dummy. Furthermore, Chvátal’s conjecture holds in
the following special case:

Proposition 12 Chvátal’s conjecture is true for a democracy M.

Proof: We must to show that dist (M,F) attains its maximum in Vn if F is
a dictatorship; that no maximal intersecting family is further from democracy
than a dictatorship. Let F be a maximal intersecting family, and let Fi be the
intersecting family of i-element coalitions in F . Then

dist (F ,M) = |F \M| =

(n−1)/2
∑

i=0

|Fi|.

Furthermore, [?] for i ≤ n/2, there are no intersecting families Fi of over
(

n−1
i−1

)

i-element subsets of X = {1, 2, . . . , n}. So

dist (F ,M) ≤

(n−1)/2
∑

i=0

(

n − 1

i − 1

)

.

This bound is attained by all dictatorships. Thus, no family is further from
democracy than a dictatorship. (In fact, only dictatorships are maximally dis-
tant from M, since only in the case of dictatorship does F1 6= ∅.) 2

When n is even but not a power of two, define a near democracy to be a
regular maximal intersecting family which includes all the majority coalitions.
In other words, an intersecting family consisting of all the majority coalitions
and, for each a, half of the coalitions of size n/2 which contain a, that is 1

2

(

n−1
n/2−1

)

of them. When n is a power of two this last number is half an odd number. In
this case, define a near democracy to be a maximal intersecting family with all

the majority coalitions and for each a, 1
2

(

(

n−1
n/2−1

)

± 1
)

of the coalitions of size

n/2 containing a.

Lemma 13 There are near democracies for every even n.

Proof: Let n = 2m, X = {1, 2, . . . , 2m} and Y = {1, 2, . . . , 2m − 1}.
Consider the cyclic group generated by the permutation σ which fixes 2m and
cyclically permutes the elements of Y . The orbits of the action of this group
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on the m element subsets of Y all have 2m − 1 members. There are thus
1

2m−1

(

2m−1
m

)

such orbits.

When n is not a power of two, this integer is even. Choose half these orbits
and form a maximal intersecting family of subsets of X by taking all majority
coalitions, the m element sets from the chosen orbits, and the complements (in
X) of the m element sets in the unchosen orbits. The result is a near democracy.

When n is a power of two there are an odd number of orbits of m element
subsets of Y . Temporarily ignore the orbit containing S = {1, 2, . . . ,m} and
perform the construction above with the remaining orbits. From the orbit of S
take S, σ2S, σ4S, . . . , σ2m−2S and the complements of σS, σ3S, . . . , σ2m−3S.2

Theorem 14 1. For n odd, the radius of Vn is given by

ρVn
= 2n−2 −

1

2

(

n − 1

(n − 1)/2

)

.

The unique maximal intersecting family of sets in the center of Vn is the
n-voter democracy M.

2. For n even, the radius of Vn is bounded by

2n−2 −
1

2

(

n − 1

(n − 2)/2

)

≤ ρVn
≤ 2n−2.

If n is not a power of two then the lower bound is attained exactly when
Chvátal’s conjecture holds for some of the near democracies. In this case
the center consists of exactly those near democracies.

If n is a power of two then the lower bound plus 1
2 is attained exactly when

Chvátal’s conjecture holds for some of the near democracies. In this case
the center includes those near democracies.

In particular, if Chvátal’s conjecture is true then the center includes all
near democracies.

One necessary condition for F to be in the center of Vn is that all voters a have
power dF (a) at least 2n−1 − ρVn

; otherwise, the maximal intersecting family F
would be too far from Da.

Let F be a maximal intersecting family and define

d = dF =
∑

a∈X

dF (a) =
∑

AıF

|A|.
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Table 2: Radius and Diameter of Vn

n Center of Vn Transitive? ρVn δVn

1 Unique element Yes 0 0
2 2 dictatorship No 1 1
3 Democracy Yes 1 2
4 4 constitutional monarchies No 3 4
5 Democracy Yes 5 8
6 60 “icosahedral” families Yes 11 16
7 Democracy Yes 22 32
8 ? No ≥ 47 64
9 Democracy Yes 93 128

10 ? ? ≥ 193 256
11 Democracy Yes 386 512
12 ? No ≥ 793 1024
13 Democracy Yes 1586 2048
14 ? ? ≥ 3238 4096
15 Democracy Yes 6476 8192
16 ? No ≥ 13167 16384
17 Democracy Yes 26333 32768
18 ? ? ≥ 53381 65536
19 Democracy Yes 106762 131072
20 ? ? ≥ 215955 262144

Then dF is maximized for n odd by the democracy which takes the larger of

each complementary pair and for n even by each of the 2(
n

n/2)/2 games with a
majority win and some rule for breaking tie votes. Easy binomial sums thus
give

d ≤ n

[

2n−2 +

(

n − 1

(n − 1)/2

)

/2

]

for n odd and

d ≤ n

[

2n−2 +

(

n − 1

(n − 2)/2

)

/2

]

for n even with equality exactly in the cases described.

Suppose that F is in the center of Vn.

ρVn
≥ dist (F ,Di)

= 2n−1 − dF (i)

≥ 2n−1 − d/n

≥ 2n−2 −

(

n − 1

⌊(n − 1)/2⌋

)

/2

The radius is bounded above by the diameter ρVn
= 2n−2. We can subtract 1

from the diameter for n > 2 since there are the families with no dummies.

Proof of theorem ??:
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(1) Let M denote the n voter democracy. As noted above, total voter
power dF attains its maximum for F = M. Moreover, by symmetry, all voters
have equal power dM(a) = DM/n = 2n−2 +

(

n−1
(n−1)/2

)

/2. Thus, democracy is

at distance 2n−1 − DM/n = 2n−2 −
(

n−1
(n−1)/2

)

/2 from all dictatorships Da. All

other maximal intersecting families are further away from some dictatorship.
As we saw in the proof of proposition ??, dist (M,F) attains its maximum if
and only if F is a dictatorship.

(2) A family achieves the lower bound for the average distance to dicta-
torships exactly if it has all majority coalitions and half of the coalitions of size
n/2. This average is also the maximum distance to a dictatorship exactly when
the family is regular, that is, a near democracy on an even number of voters
which is not a power of two. If Chvátal’s conjecture holds, no other family
is further from that near dictatorship. For powers of two, the average is half
an odd integer so the radius is bounded by the next largest integer. The near
democracies are that far from some dictatorships and, if Chvátal’s conjecture is
true, no further from anything else. 2

Open Questions: An open question (aside from Chvátal’s conjecture!) is to
pursue is the characterization of the center of Vn for n even. (See table ??.) For
n a power of two can there be families in the center which include a coalition of
size n/2 − 1?

Notice that the center is not necessarily connected, nor is it closed with
respect to the binary choice and trinary median functions defined above. (See
for example V4.) Indeed, when the families described in theorem ?? comprise
the center, they are all in the same half of the bipartite graph Vn and hence are
an independent set.

What is the average distance dist (F ,G) between two maximal intersecting
families F and G? That is to say, what is the expected correlation P(F|G)
between two maximal intersecting families?

8 Degree

The degree of a maximal intersecting family F in Vn is the number of vertices
adjacent to F in Vn. This is also the number of minimal winning coalitions it has
since switching the minimal winning coalitions of F yields a distinct adjacent
maximal intersecting families and all adjacent vertices are obtained in this way.

What is the maximal degree in Vn? To answer this question, we need the
following lemma.
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Lemma 15 1. Let i ≤ n/2, and let A be an antichain of sets of cardinality
at most i. Define the shade

∇(i)A = {A ⊆ X : |A| = i and A contains some member of A.}

Then |A| ≤ |∇(i)A| with equality if and only if A consists exclusively of i
element sets.

2. Let i ≥ n/2, and let A be an antichain of sets of cardinality at least i.
Define the shadow

∆(i)A = {A ⊆ X : |A| = i and A is contained by some member of A.}

Then |A| ≤ |∆(i)A| with equality if and only if A consists exclusively of i
element sets.

Proof: Follows immediately by induction from a result of Sperner [?, ?, p.
11].2

Theorem 16 1. If n is odd, the maximal degree in Vn is
(

n
(n+1)/2

)

. This

maximum is attained only for the democratic maximal intersecting family
{A ⊆ X : |A| > n/2}.

2. If n is even, the maximal degree in Vn is
(

n
n/2−1

)

. This maximum is

attained only for the n maximal intersecting families Ma for a ∈ X where
A ∈ Ma if |A| > n/2, or if |A| = n/2 and a ∈ A.

Proof: (1) Apply Sperner’s theorem [?] to the set of minimal winning
coalitions of F .

(2) Let A consist of those minimal winning coalitions of F with at most
n/2 elements and let B consist of those minimal winning coalitions with over
n/2 elements. Clearly, ∇(n/2)A is the set of winning n/2 element coalitions. By
definition, ∇(n/2)A has

(

n
n/2

)

/2 elements—one from each complementary pair.

By part 1 of Lemma ??, A has at most
(

n
n/2

)

/2 members with equality if and

only if there are no minority winning coalitions.

Let D be the collection of n + 1 element coalitions which do not cover
∇(n/2)A.

D = {D ⊆ X : |D| = n/2 + 1 and ∀A ∈ A, A 6⊆ D}.

By transitivity, ∆(n/2+1)B ⊆ D. Moreover, by part 2 of Lemma ??,
|∆(n/2+1)B| ≥ |B|.
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The compression lemma [?, p.119] implies that
(

n−1
i−1

)

i-element subsets

of an n-element set of contained by at least
(

n−1
i

)

i + 1-element subsets with
equality if and only if all of the given subsets contain a common element.

Thus, D contains at most
(

n
n/2+1

)

−
(

n
n/2

)

/2 =
(

n−1
n/2+1

)

members. In all, the

cardinality of the set of minimal winning coalitions A ∪ B is at most
(

n
n/2

)

/2 +
(

n−1
n/2+1

)

=
(

n
n/2+1

)

. Moreover, the equalities hold only if there are no minority

wins and all n-element wins contain a common voter.

The only such maximal intersecting family is Ma. Ma is the voting scheme
in which voter a is given two votes and everyone else is given one vote; A ∈ F if
|A| > n/2 or if |A| = n/2 and a ∈ A. There are thus

(

n−1
n/2

)

=
(

n−1
n/2−1

)

minimal

coalitions not involving a, and
(

n−1
n/2−2

)

minimal coalitions involving a for a total

of
(

n
n/2+1

)

minimal winning coalitions.2

Open Question: What is the average degree of a maximal intersecting
family? That is to say, what is the expected number of minimal elements of
F? Given an asymptotic formula for the average degree, we could deduce an
asymptotic formula for the number of edges in Vn, or visa versa.

Table 3: Average Degree

n 0 1 2 3 4 5 6 7
number of vertices in Vn 0 1 2 4 12 81 2 646 1 422 564
number of edges in Vn 0 0 1 3 16 185 10 886 10 552 451
approx. avg. degree - 0.000 1.000 1.500 2.667 4.568 8.228 14.836
minimal degree - 0 1 1 1 1 1 1
maximal degree - 0 1 3 4 10 15 35
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