OFFSET
4,3
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 327.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2d edition 1994, p. 341.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Index entries for linear recurrences with constant coefficients, signature (0, 3, 2).
FORMULA
G.f.: x^4*(-x^2 - x - 1)/((1 + x)^2 (2 x - 1)). - corrected by Harvey P. Dale, Apr 22 2011
With offset 0: a(n) = 1/9*(7*2^n+(-1)^n*(3*n+2)); if b(1)=1, b(k) = 2*b(k-1)+(-1)^k*k, then for n>4, a(n)=b(n-4). - Benoit Cloitre, Oct 28 2002
a[0]=a[1]=1; a[2]=4; a[n]=3a[n-2]+2a[n-3] [From Harvey P. Dale, Apr 22 2011]
MATHEMATICA
LinearRecurrence[{0, 3, 2}, {1, 1, 4}, 41] (* or *) CoefficientList[Series[ (-x^2-x-1)/((1+x)^2 (2x-1)), {x, 0, 40}], x] (* Harvey P. Dale, Apr 22 2011 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved