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GEORGIA INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING

ATLANTA, GEORGIA 30332

TELEPHONE: (404) 894- 2_1,5'/

June 21, 1991

Dr. N. J. A. Sloane
Room 2C-376

ATT Bell Labs
Murray Hill, NJ 07974

Dear Neil,

In addition to the material I sent you on the 17th, I am sending some other documentation

which possibly may be of interest to you.

The formula for the number of distinct state assignments N for a completely specified state

machine having n states and k state variables is given as

(2% — 1)1
N = 5
(2% —n)k!
L where k= |'log2 n]. The class usually derives this formula in my switching theory classes. A table of

the first few values is given on page 308 of [1] and a partial derivation is given on 307 of [1]. The
complete derivation is asked for as Problem 12-1 on page 437 of [2]. Between the two references the
derivation is obvious. I have included a tabulation through n =32. 1 added the 1 state value because
a one stafe “synchronous” machine is a combinatorial circuit and has no change in state and hence no
state variables. I calculated the values for the tabulation using Derive and saved them in an ASCII file.

The ASCII file was later impo¥ted into my math word processor EXP, version 2, and edited therein.

I have observed two other sources of tables with which you are probably already familiar, but
I’ll mention them anyway. Reference [3], pages 233-242, includes an assortment of the usual tables
plus some of the author’s own. Reference [4], pages 290-300, has block design tables and tables of
Hadamard matrices of the Williamson type. I will include xerox copies of pages from [3] and [4] for

your convenience just in case the references are hard to find.

Sincijely, .

Dan Fielder, Professor Emeritus

If T can be of further help, please call on me.
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Dec. 9, 1991

TELEPHONE: /[(404) 894.- e
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Dr. N. J. A. Sloane 2c376
AT&T Bell Laboratories
600 Mountain Avenue

PO Box 636

Murray Hill, NJ 07974-0636

Dear Neil:

I ran across another count of state assignments in an out of print text by
Woods. I've enclosed the pertinent pages. This count evidently has slightly different
restrictions from the one I sent you in my letter of June 21, 1991. For what it’s worth,

L here it is.

I didn’t realize until I talked with some of my friends a while back that you
were also the Sloane who is the coding theory ‘“guru.” Good luck again on your
revision.

Sincerely,

Dan Fielder
Professor Emeritus

A UNIT OF THE UNIVERSITY SYSTEM OF GECRGIA

AN EQUAL EDUCATION AND EMPLOYMENT OPPORT/UNITY INSTITUTION



Lincoln Laboratory Publications

Athans and Falb Optimal Control

Bartee, Lebow, and Reed Theory and Design of Digital Machines

Davenport and Root Random Signals and Noise

Gr-»n Digital Compulers in Research

Harman and Honig Thermoelectric and Thermomagnetic Effects and
Applications

Kleinrock Communication Nels: Stochastic Message Flow and Delay

Lax and Button Microwave Ferrites and Ferrimagnelics

Shapiro Prediction of Ballistic Missile Trajectories from Radar Observations

Wood 'ﬂ'tch ing Theory
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SWITCHING THEORY

Paul E. Wood, Jr.
Lincoln Laboralory
Massachusetls Inslitule of Technology
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McGraw-Hill Book Company

New York, St. Louis, San Francisco
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262 Minimum-complexity sequential networks

Number of Distinct State Assignments It is common practice to
produce both delay and amplification with the same device so that in
effect an amplifier is inseparably associated with each unit delay. Also,
it is often convenient to produce, in addition to the delayed output, the
negation of the delayed output. The resulting delay element is illustrated
in Fig. 6-24.  There are abundant practical reasons for using the complex
delay element of Fig. 6-24. First, amplification is very often accom-
panied by both delay and inversion (e.g., vacuum tube and transistor
amplifiers). Sccond, if passive gates (e.g., diode-resistor gates) are
employed in the g network, then the gate elements will have less than
unity gain. Now, the use of an amplifier with every unit delay assures
that there will be no more than two levels of gates per amplifier (on the
assumption of two-level AND-OR- or OR-AND-gate networks), and
hence, greater than unity loop gain can be achieved. Finally, memory

Fig. 6-24 Delay element consisting of a unit delay with associated amplifier and
negated output.

elements with characteristics very similar to the delay element of Fig. 6-24
will we introduced in Chap. 7 in order to achieve proper sequential-net-
work operation in the face of input and delay asynchronism.

The delay element of I'ig. 6-24 is usually far more complex than a single
gate. Therefore, it is reasonable to employ the minimum number of such
elements in a sequential-network realization. Hence, it will be assumed.
that one such delay element will be employed for each feedback connec-
tion of I'ig. 5-23, where [log; #(S)] is the number of feedback connections.
Thus, it is assumed that [log, #(S)] state variables will be used to realize
asequential machine with #(S) nonequivalent states. Now, if, in addition
to negated state variables, negated input variables are provided to the
sequential network, then NOT gates are not required in the f or g networks.

Given that a minimum number of state variables are used and that
negated state and input variables are available without NOT gates, then
the number of state assignments N which may result in different J- and’
g-network complexities can be computed as follows.!! Let the number
of noneauivalent states be denoted s = #(S) and the number of state
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variables be denoted r = [logs s]. Now, the state assignment involves
the assignment of 27 valuations to s states, which can be done in 2-1/
(2r — s)!s! ways, not including reordering. Since s cobjects can be
reordered in s! different ways, there are a total of 27ls!/(27 — g)!s! =
2r1/(27 — s)! ways of assigning 27 valuations to s states. However, not
all these assignments produce different f- and g-network complexities.
If the ¢th and jth positions of every assigned valuation are interchanged
to generate new assigned valuations, then the new excitation exgressiolns
can be obtained from the old by simply substituting y: for y; (y; for y3),
and vice versa. But this can be accomplished without altering f- and
g-network complexity by simply interchanging y: and y; (¥, and y;) inputs.
Note that negation of one or more positions may lead to f and g networks
of different complexities.!> Therefore, since there are r! permutation
transformations for each assignment, then the value of N is given as

2!
@2r —s)ir!
Table 6-1 Number of Distinct State Assignments N for a h
Sequential Machine with #(S) Nonequivalent States

N =

Values of N for 0 < s < 9 are given in Table 6-1.

#(S) [log: #(8)] N
2 1 2
3 2 12
4 2 12
5 3 1,120
6 3 3,360
7 3 6,720
8 3 6,720
9 4 172,972,800

Reduction of f- and g-network Complexities Using Adjacent State
Assignments The results of Table 6-1 make it very clear that, even for
sequential machines with a modest number of states, the minimum-
complexity realization cannot be obtained by enumerating every state
assignment and calculating the network complexity for each. Instead,
the state assignment must be generated from the structure of the sequen-
tial machine to be realized. The previous two state-assignment proce-
dures (i.e., shift-register realizations and reduction of state-variable
dependency) are fruitful only if the machine in question has an SRP or a
partition with SP. A machine chosen at random probably will have
neither of these partitions. Further, the resulting state assignments are



