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Abstract

We have extended the enumeration of square lattice and triangular lattice

self-avoiding walks and their end-to-end distance by two terms. We have
also calculated 17 terms in the series for the resistance of saws with
bridges on the square lattice. Analysis of the new data allows the

connective constants to be more accurately estimated, and affirms the

values y = 43/32 and v = 3/4, and 1+ y for the exponent of the resistance

series.




“
¢

1. Introduction

In an earlier paper Wang (1989) we presented an algorithm for
eénumerating saws. We subsequently found that this algorithm had in fact
previously been developed by Torrie and Whittington (1975). In a related
paper, Guttmann (1987) gave a systematic method for the analysis of such
series based on the method of differential approximants (for a full
description see Guttmann 1989a).

In this paper we report the extension of the saw chain generating
function and mean Square end-to-end distance series for the square and
the triangular lattice data, both by two terms. Thus we now report data
to 22 terms and 29 terms on the triangular and square lattices
respectively. The calculations were performed on a Masscomp 5700, and
took about 700 hours for the triangular lattice calculation, and somewhat
less for the square lattice calculation.

By similar methods we have enumerated the mean resistance
averaged over all self-avoiding walks with bridges. This series is given to
17 terms for the square lattice, and augments the related work on this
problem by Manna et al. (1989).

The new terms are:

Square: Cog.= 2 351 378 582 244 C28028/4 = 69 477 665 745 896
Cp9 = 6 279 396 229 332 Co9p29/4 = 195 265 123 427 301
Triang:  c,; = 32 944 292 555 934 C1py1 = 2 336 297 244 025 746

Cyp=1388250972053046  Cyyp)) = 10 544 208 270 404 040

For the square lattice, the series for the mean resistance of saws with
bridges, as described in Manna et al, (1989), is given by the coefficients:
4.0, 24.0, 90.0, 328.0, 1090.8, 3575.467, 11156.904, 34674.676,
104463.883, 314446.844, 926065.31 3, 2727633.75, 7907241.5,
22961948.0, 65989872.0, 1 87568736.0, 542658624.0, 1188122112.0 for

the coefficients of order 1-17 in the generating function.



2. Analysis of series

The method of analysis used is fully described in Guttmann (1987,89a).

The data for the triangular lattice permits an extension of the analysis

given in Guttmann (1 989b). We have constructed both unbiased and biased
differential approximants, where the biasing involves assuming that the
exponent is 43/32 exactly for the saw generating function. Both first and
second order differential approximants were used, the results being of

comparable quality. Unbiased estimates gave

Xc = 0.240916 + 0.0000024 v=1.3431+£0.0008 (1st order)

Xc = 0.240916 + 0.0000033 y=1.3431+0.0008 (2nd order)
These results lend strong support to the generally accepted value

< (Neinhuis 1982) y = 43/32 =1.34375. Accepting this value, linear

regression on the approximants gives x; = 0.2409185 + 0.0000010.

This may be compared with an earlier estimate (Guttmann 1989b) based on

the 20 term series, of x, = 0.24091 9.

w The square lattice data was analysed similarly. The unbiased

approximants gave the following estimates:

Xc = 0.3790518 + 0.0000030 y=1.34355+0.00069 (1st order)
Xc =0.3790519 + 0.0000012 y=1.34357 £0.00028 (2nd order).

Biasing the approximants at y = 43/32 gave Xq = 0.3790526 + 0.0000005,

which is in good agreement with the estimate based on 56 step polygons

(Guttmann and Enting 1988), X = 0.3790523 + 0.0000002.

As observed in previous studies, the generating function of the
mean square end-to-end distance is not as well behaved as the saw

generating function. This remark applies both to the generating function

L whose coefficients are cp,pp, as well as the generating function with

L coefficients <Rn2>. In both cases a large percentage of defective
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approximants arise. The advantage of analysing the series for <Rn2> is

that the critical point is of course precisely at 1.0. If we do this, the
estimates of the exponent 1 + 2v is 2.497 and increasing (1st order) and

2.499 and increasing (2nd order). Alternatively, biasing the generating

function for c,p, at the value of X¢ found above gave y + 2v = 2.842 + 0.004.

All these results are consistent with the presumably exact value v = 3/4.

The square lattice data gave rise to similar results for < Rn2>, while
biased analysis of the generating function for c,,p,, at the value of Xe

found above gave y + 2v = 2.843 + 0.004. These results are again consistent

with the presumably exact value v = 3/4.

Turning now to the resistance data, an unbiased analysis strongly

Supported the expected belief that the exponent was the same as that of

the saw generating function. In fact we found X¢ = 0.37903 + 0.00357 with

exponent 2.33 + 0.33. Subsequent biased analysis, fixing the critical point
at the value quoted above gave for the critical exponent 2.340 + 0.035.
From the results of Manna et al. we would expect this exponent to be

(1 +v) = 75/32 = 2.34375, which is close to our central estimate and well

within error bars.

3. Conclusion

We have refined our previous estimates of the critical points and critical
exponents of the two-dimensional saw problem on the square and
triangular lattice, on the basis of a significant extension of existing
series. We have also given a new series for the resistance of saws with
bridges, and presented numerical evidence supporting previous

conjectures as to the exact exponent values.
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