&\ ,,J\l-

b 667t

SEARCH IN AN ARRAY IN WHICH PROBE COSTS GROW
EXPQNENTIALLY OR FACTORIALLY

MARY V. CONNOLLY* and WILLIAM J. KNIGHT}
. ' Cilmean | JV/ f
Abstract. We consider efficient strategies for searching an ordered array in which the cost
of a probe into the array increases exponentially or factorially as the probe location moves from left
to right. We show that binary search is oﬁen significantly inferior to certain other simple search
strategies. This is true both in the case where expected search costs form the basis of comparison

and also in the case where it is desired to minimize the maximum possible search cost.
Key words. array search, search trees, binary search
AMS(MOS) subject classification. 68P10

1. Introduction. Steiglitz and Parks [3] have described a filter-design problem that turns
out to be equivalent to the problem of searching an ordered array of n elements in which a probe
into the k-th array location has an associated cost that increases as k increases. The equivalence of
the two problems is explained in [1].£That paper confirmed a conjecture of Steiglitz and Parks to
the effect that although binary search might be expected to perform less well, when measured by
expected search cost, than search strategies that probe to the left of the center of the remaining array |
at each step of the search, in fact binary search is surprisingly near optimal when the probe costs are
given by a polynomial in k?)ln the present paper we consider what happens when the probe costs
grow exponentially or factorially. We shall show that in these two cases, binary search is often
inferior to certain other simple search strategies. |

' W-J\L _

2. Preliminaries. Throughout this paper{}ve assume we confrontjthe situation

encountered by Steiglitz and Parks [3], namely an array of n problems of some kmd, one for each

 array subscript k from 1 to n. The amount of time required to solve the k-th problem is given

by a "penalty function” P(k) . Each problem has a "yes" or "no" answer, and when the answer is
"yes" for some k() itis "yes" for all larger-subscripts k. We seek the smallest value of k for

kZ .
* Department of Mathematics, St. Mary's College, Notre Dame, Indiana 46556.
t Department of Mathematics and Computer Science, Indiana University, P.O. Box 7111,

- South Bend, Indiana 46634. -

which the answer is "yés", provided there is such a k. To find this smallest value we want to use
an optimal search strategy on the array. There are two ways to decide whether one strategy is better
than another. The first compares the expected search costs of the co‘m;;eting strategies; the second
compares their worst possible costs. In this paper we consider both criteria. We look at
exponential and factorial penalty functions because the solutions of many combinatorial problems
require exponential or factorial time. :

Every search strategy in an array of length n corresponds to a unique binary tree T,; with
node labels 1, 2, ..., n, placed so that the inorder traversal of Ty finds the labels in increasing
- order. Conversely, every such binary tree corresponds to ’exac'dy one search strategy. We shall
call any such tree a search tree . The root of the tree gives the location of the first probe into the
array. We go left if the probe resulcti }g\ a cyes , Tight if we get a "no”, and repeat the process with
the corresponding subtree. We cannoet-stop until we reach one of the n + 1 exzrernal nodes (see
[2, p. 239]), at which point we can identify the location of the first "yes". Thus the search strategy
prescribed by the tree corresponds to an unsuccessful search of a conventional array in which

records with keys have been stored in increasing key order (see [2, p. 237)).

3. Optimal strategies for expécted costs. Consider the case where search strategies
are to be compared on the basis of their expected costs. We have no prior information about the
array location of the first "yes”, and so we assume that it is equally likely to be found in any of the
n locations or not to be found at all. That is, each possibility has probability 1/(n + 1). It follows
that the expected cost of an unsuccessful search using a search tree Ty, is given by

(1) | y { DI ?(k)}

i=1 nodes k from root to j-th external node

where the inner sum in (1) is taken over all internal nodes k that lie on the path in T, from the
root down to the j-th external node. We can write (1) in a more useful form by letting Wy (Tp)
denote the number of internal nodes in that subtree of T, whose rootlabelis k. The number of

internal nodes in an extended binary tree is one less than the number of external nodes. It follows
that Wi(Tp,) is one less than the number of times that the term P(k) will occur when the value of

expression (1) is computed. Thus the expected cost of a search, using Tp , is equal to

E P(k) [Wk (Tp) + 1] = E P(k) Wi (Tp) + Z P(k)
k=1 ‘ k—l k=1

For computational convenience we discard the constant factor 1/(n + 1) and the constant term
L P(k) and we call the remaining sum the search cost of T, for P(k), or sometimes the search cost

of the strategy corresponding 10 T, . We denote this by Sp(y)(Ty) . That is,

n

N

o) - SPao(Tw) = L PX) Wy (Ty)
k=1

There is a recursion formula for Sp(y(Tp) that is essential both for proving theorems and

for computer searches. Before deriving it, we find it useful to introduce a little more notation: if
T denotes a search tree with n nodes, then t + Ty, will denote the same tree with all node labels

increased by t (see Figure 1). Now observe

Ty ' 2 + Ty
Figure 1
thatif r denotes the root of Ty, then the left subtree at r is a search tree with r- 1 nodes, and
we shall denote it by Tp_{, but the right subtree is a not a search tree. Instead, the right subtree has
the form r + Tp.r , where Tp_; is a search tree with n - r nodes. Then by splitting the sum in (2)
into three pieces corresponding to the root, the left subtree, and the right subtree, we obtain the
perfeetly-general-recursion formula
‘ n
3) Spk) (Tn) = P() 0 + Spy (Tr.) + 2 P(K) W (r+ Ty -
k=r+1 ‘
We can simplify the appearance of (3) by generalizing our notation slightly to allow a "translation
parameter™: if T 1s a search tree with m nodes, then for all non-négative integers t we write

t+m m

O Spag t+T) = L P(k) W (t+T) = 2 Pit+k) Wy (T).

k=t+1 k=1

Then (3) can be written as

& ~ Sp(y) (Tn) = P n + Spgx) (Tr-1) *+ Spx) 0+ Tn - o)

and, more importantly, generalized in an obvious way to the form
(6) © Spy(t+Tp) = P(t+n) n + Spy (t+Teep) + Sp) t+r+Ty.y) .

. .
If we let SP(k) (n,t) denote the rmmmal possible value of Sp(k) (t +Tp) as Ty ranges over all

search trees with n nodes, then it is easy to verify that (6) implies

7 S;(k) (n,t) = min{<r<p {P(t+r) n + S;(k)(r-l,t) + S;(k) (n-r,t+r) },

and that the values of r that produce the minimum in (7) are the roots of optimal search trees for
the prescribed values of n and t. Note that a search tree T, may be optimal for one value of t,

yet fail to be optimal for a different value of t. For example, when P(k) =k! and n=4 the tree
T4 shown in Figure 1 is optimal for t=0 but not for t=2. Or, to put it differently, when P(k) =

k! the tree T4 is optimal among all 4-node search trees T, but 2 + T4 is not optimal among all
4-node trees 2 + T . These assertions can be verified simply by examining all 14 possible 4-node
search trees T. Ghy ot give Nz ¢p R L-é-f-’ 7

Generally, of course, what we really want is the number SP(k) (n, Q) , which we shall

. *
abbreviate as SP(k) (n) , for a prescribed P(k) and n, as well as complete information

‘concerning at least one optimal search tree whose search cost is this optirhal number. Recurrence
* -
relation (7), together with the fact that SP(k) (0,t)=0 forall t, makes it possible for us to

compute all this information by computing a triangular array of optimal costs and roots for all pairs
(k, t) satisfying k20,t20, k+t <n. The following theorem drastically limits the number
of values of r that must be examined in formula (7) foreach n and t when P(k) isa fast

. . - : SN
growing function. wa & bail 5¢7u<, Ne wml)' { 6(7-\4«:,-/.2)p.f-:j.'aW*-*J 4

THEOREM 1. Let P(k) be any positive penalty function. Let n21 and t20 be prescribed
integers. Then any root r that minimizes the expression on the right in equation (7) must satisfy
the inequality

| Pa+y) o
T

+1
% P(1+1).

Proof. Since most of the proofs in this paper are somewhat long and technical, we have chosen to
place them all in a separate section at the end of the paper. Please see the last section. 7

not » ﬁoo% 1deq ’.

I 2lqeL

957

— N M T N O~ @

0¢
6T
81
Lt
91

"GT

|A
€1
AN
Tt
0T

=

4 8TIL69°C € 6AS8L" L S’z rE£0868E 4 pAIIE "
€ LTH9GE" T z 6d565°¢C b 866861 € PALLS T
€ GTEZ8T L T 89059 ' 8 € 88V L6 9 bPE0GS0 T
Z p148T0° ¥ £ 8IEB8 T 4 BETLBY S £4686 "9
Z €13€8E" 2 4 LATTIY "6 b 909€bZ b €ATG9 " ¥
€ ZTIE0S T Z LAV0T" € € Z6LT2ZT € €9G660° €
€ TTIZT0° T £ L3890 1 Zz 06809 b €4L50°2
4 604TZE" L 4 0ES6SSE v 8EVOE S €IE9E"T -
z 80AVTIL"S £ €0G98T1T £ 802ST b 06€°006
€ v68YSV8Y 4 06%G6€ Z 86GL £ GBE ¥6G
€ 80Z00S¥ T 9Z8TET z V6 LE b 896" 68€
Z ETE€CZ9¥ Z ZE6ED £ 8881 € POT " ¥GZ
Z LOZES 1 0v9¥bT z 8€6 € 6GG €91
z'1 1869 4 ZL8Y € b9 b £ 081 H0T
Z 6901 T 02971 Z 922 € PEL I
Z L6T Z VES Z'T. 0TI 'z 906" 8€
Z Sv 2’1 PLT 4 0S 4 £1€°22
Z't €1 T vS Z't A4 Z 'GZ9'TT
1 4 1 ST T 8 1 06Z°S

T 1 T £ T Z 1 . 00S°T

s] rewndQ 150D Yoreag soau], rewndo 150D yoresg s9a1], [ewndQ 150D yoreag soa1], rewmndQ Hmo”.u yoreag
Jo s100y [ewndo Jo s100yg [ewndQ JO s100y Tewundop Jo sj00y rewndp
M= ODd yE = ODd ¥ = ODd 3T = (Dd

Y - 9

-

Whea it is deemed necessary, within a computer program, to have a search guided by an
exact optimal searchu'ee T for a prescribed integer n and penalty function P(k) , then T canbe
constructed by the following algorithm, which uses two triangular arrays S_(k,_ t) and R(kt) ,
where k>0,t20,k+t<n. S(k t) will be the search cost of an optimal tree with k nodes,
 and R(k, t) will the the smallest root possible for such a tree.

A. For t=0, ..., n, initialize S(0,t) to zero. (The values of R(0, t) are never used.)
- B. Fork= 1, .., n do
for t=0,..,n-k do

P(r+t)

S(k,t) + min { P(t+r)k + S(r-1,t) + S(n-r, t+1) : 1<r<n, — < P(1+t)}

R(k, t) « the smallest value of r that minimizes the expression above .
C. Invoke the following recursive procedure with T empty, k=n, and t=0:
procedure BuildSearchTree (T, k,t) {T : reference parameter; k, t :value parameters}
if k>0 then |

create a root node for T;

label the root node R(k, t);

BuildSearchTree (Left (T), R(k t) - 1, 1) ;

BuildSearchTree (Right (T), k- R(k, t), t + R(k, t)) .
We omit the induction proof that the resulting tree T is an n-node search tree and is optimal for
P(k) . Note that the arrays S(k,t) and R(k, t) can be discarded after steps. B and C
respectively. Steps A and B were used to calculate the S;, (n) values shown in Table 1, but

with the modification that R(k, t) was made to be a list of all optunal TOOtS.
~ Since it can be time and space consuming to construct exact optimal search trees to guidea -
search, it is reasonable to seek simple search trees (i.e. strategies) that can be proved to be nearly
optimal. In this paper we have done this for penalty functions that grow exponentially or
 factorially. In particular, we find that when P(k) = k! , linear search is so nearly optimal that no
other more complicated strategy need even be considered. In particular, binary search is inferior to
linear search. These assertions are based on the folldw'mg theorem.

THEOREM 2. Suppose P(k) =
(a) Thes&rchcostofcverys&rchs&aiegyinanairayofsizg n27 exceeds
al + 2(n-1! + 3(@-2)! + 4@-3)! + (a-4)!.
(b) The search cost of a linear search in such an array is less than
n! + 2(n- 1)' +3(n-2)! + 4@-3)! + 9-4)!.
(c) Only when. - is 4 or 5 does the cost of linear search differ from the optimal by more than
one percent. When n > 10, it differs by less than one one-hundredth of a percent.

(d) For infinitely many values of n the search cost of a binary search in an array of size n
p exceeds -
- !+ 3n-1! + (n-2)!.

Proof. See the last section.

Parts (b) and (d) show that the cost of binary search infinitely often has a significantly larger
second-highest order term than the cost of linear search. Thus, although the highest order term for
binary search is "correct” and the percent excess over the optimal cost approaches zero as n goes
to infinity, the approach is far slower than with linear search. For example, when n = 15 bmary
search is almost six percent worse than linear.

Consider now the case in which the penalty for probing in 1ocat10n k is proportional to bX
for some constant b > 1. The constant of proportionality does not materially affect the
computations, so we assume simply that P(k) = b¥ . Then itis easy to see from (4) that

(8) Spk (t+Tp) = bl S5 (Ty) .

This equation has the happy consequence that when P(k) = bX for some constant b, then a search
tree Ty, is optimal for one value of t if and only if it is optimal for all values of t (cf. the

comments following equation (7)). Equation (5) now takes the form
©) | Spk (Tn) = bT 0+ Sy (Te) + bF i (Top)

and (7) can be replaced by the simpler equation
* o * *
(10) Spk(m) = min [<r<p {bln + Spk(r-1) + b'S x(n-1) } .

Again, values of r that produce the minimum in (10) are roots of optimal n-node search trees.
. *
It is now ea.sy to write a program to find, for each n, the value of Sbk (n) and the roots of

}J\Z\ all optImal trees. Table 1 shows some of this information for three dlfferent valuesof b.
Table 2 shows the formulas for Sbk (n) for n=0,1,.. ,7 andall b> 1. Using (3) and a

N
1

f\‘h
RN 7
.")
¢y

—

\mathemanalXprogram the authors have generated many more of these formulas, and each is uglier
than its predecessors. This suggests that an elegant theory for exact optimal trees is impossible.
Note, for example, the mystifying alternation of the root of the optimal tree when n=7.

Again we have investigated trees that can be shown to have search costs that are very nearly
bptima.l. Here is a summary of our results for penalty functions of the form P(k) = bX . Proofs of
these assertions can be found in the last section of the paper.

(a) If 1<b<1.18 (approximately), then binary search is so near optimal (at worst about 4 1/2
\b percent above optimal) that for most purposes binary search would be the search sn'ategy of choice.

Root of optimal

n s Y () o ~° search tree
0 0
Ly - .
2 2b + b2 ' | ' | B | 1
3 b + 3b2 + b3 if 1 <bsg2 2
3b + 262 + b3 if 2<b _ 1
4 b + 4b2 + 253 + pbd if 1 <b <% 3. ' | T2
4b + 3b2 + 2b3 + b4 if 3<$0b : : 1
5 b + 5b2 + b3 + 3p4 + BS if 1 <b<2 | 2
b + 5p% + 3b3 + 2b% + b5 if 2<Dbs4 2
5o+ 4b2 + 303 + 2p4 + BS if 4 < b | | 1
6 2b + b? + 6b3 + b% + 3p5 + bb if 1 <b s 1.58457% 3
b + 6b2 + b3 + 4b4 + 205 + pb if 1.58458" < b £ 2.8637 2
6b + b2 + sp3 + 3p% + 2b5 + pb if 2.8638 S b < 3.6180 1
b + 6b% + 4b3 + 3b% + 2b5 + pb if 3.?181 $b<s 2
‘60 + 5b2 + 4b3 » 3b% + 205 + b6 if 5 < b 1
7 b + 3b2 + b3 + 7p% + bS5 + 3p6 + p? if 1 <b< 1.3416 4
2b + b2 + 703 + b4 + ab5 + 206 + BT if 1.3417 S b € 2.2360 3
7b + b2 + 6b3 + b% + 45 + 206 + b7 if 2.2361 < b < 2.6415 1
b + 702 + 3 + sp% + 3b5 + 2b6 + b7 if 2.6416 S b < 3.8454 2
7b + b2 + 6b3 + 4b? + 3p5 « 2bé + b’ if 3.8455 £ b S 4.7320 1
b,; 702 + 5b3 + 4b% + 305 + 2b6 + BT if 4.7321 S b <6 2
75 + 602 + sp3 + 4b% + 305 + 206 + b7 if 6 <$b ‘ L

* This number is an approximation to one of the irrational roots of the polynomial
equation 2b + b? + 6b3 + b4 + 3b5 .+ b6 = b + 6b2 + b3 + ab% + 205 + b6, similarly
for the other non-integer values. ’

Table 2

(b) If 1.19 <b < 1.68 (approximately), then a "quarter-linear” search strategy (to be described)
yiélds results that are at worst about 4 1/2 percent above optimal. Over most of this interval, binary
search is always inferior to the quarter-linear strategy, sometimes by as much as 4 percent. The
quarter-linear strategy can be roughly described as one in which you begin at the left and probé in
every fourth location moving to the right until you find you have gone too far.

(c) If 1.68 <b <3.2 (approximately), then a "semi-linear” search strategy (siarting at the left and -
probing in every second location) is better than both the quarter-linear strategy and binary search,
and is at worst about one percent above optimal. Binary search cost can exceed semi-linear search
cost by as much as 7 1/2 percent.

(d) If b > 3.2 (approximately), then linear search is better than semi-linear, quarter-linear, and
binary search, and is at worst about 1/2 of one percent above optimal. For every b > 3.2, binary
search cost can be at least 7 1/2 percent above linear search cost. |

4. Minimax strategies. Now consider the problem of finding strategies.that minimize the
maximum possible cost of an array search. Actually, we demand more of a "minimax strategy": in
the corresponding search tree, every subtree must be optimal. Thus, for example, if the optimal
search tree has its most costly path in the right half of the tree, the left subtree of the root must
nevertheless be an optimal minimax search tree so that if an actual search leads into that part of the
tree, it will not be unnecessarily expensive. As it turns out, optimal minimax strategies in the cases
we are considering are totally different from the strategies that minimize expected costs. Instead of
probing near the left end of the array, one probes near the right end. For example, as we shall see,
"reverse semi-linear” trees of the form shown in Figure 2 are optimal when P(k) is a fast growing
function. A reverse semi-linear tree with n nodes is defined recursively as follows: if
n=0, the tree is empty; if n=1 the tree consists of a single node; if n> 1 the root of the tree is
n - 1, theright child of the root is n , and the left subtree of the root is the reverse semi-linear tree

having n -2 nodes.

THEOREM 3. Let P(k) be any function which grows so fast that P(n) 2 P(n - 2) + P(n - 3)
forall n23. In particular, this applies to penalty functions of the form P(k) = (k +t)! , where t
is a non-negative integer, and to penalty functions of the form P(k) = bX | where b > 1.325 (the
root, appfoximately, of b3 = b+ 1). Then for all n, the reverse semi-linear tree is minimax-
optimal, and if n> | then the path (n- I, n) is a most costly path. If P(n) > P(n - 2) + P(n - 3)
for all n >3, then the reverse semi-linear trees are the unique minimax optimal trees.

Proof. See the last section.

- Figure 2. Reverse semi-linear treefor n=7 .

When P(k) = bK the reverse semi-linear trees are still optimal when b is a little smaller than
1.325, but as we shall see, the most costly path now goes down to the left instéad of to the right,
although at the boftom it veers off to the right. For example, in the tree in Figure 3 the most cosﬂy
path would be (6, 4, 2, 3).

THEOREM 4. Let P(k) =bK, where 1.237 <b <1.325. Then for all n, the reverse semi-
linear tree is minimax-optimal, and for n 2 4 the path (n- 1,n - 3, ..., 1+ (n mod 2), 2+ (n mod 2)
is a most costly path. (The numbers 1.237 and 1.325 are the approximate roots of the equations
b> = b3+ 1 and b3 = b + 1 respectively.) |

Proof. See the last section.

For still smaller values of b the minimax-optimal trees are, generally speaking, less predictable.
It is possible to prove, however, that if 1.089 <b < 1.203, then the minimax-optimal trees of size
n > 8 all have root n - 3, which makes them easy to construct recursively. (The numbers 1.089
and 1.203 are the roots of b7 + b0 = b3 +b2 + 1 and b7 =b2 + b + 1 respectively.) We have
not been able to prove any useful theorems about the exact minimax-optimal trees for 1.203 <b <
1.237 or for b £1.089,

5. Proofs of the theorems.

Proof of Theorem 1. We use inductionon n. If n=1) then r=1 and the inequality to be
proved is trivial. Now suppose the theorem is true for n=1,2, ..., m- 1, where m22. We
seek to prove that it is also true when n=m. Itis triviaily true if r=1, so suppose r>1. We |
know that r is the root of some optimal n-node search tree, say T; , for the prescribed values of n

- : *
and t. Let ¢ denote the left child of r in T, . Perform a simple tree rotation (see [2, p. 306]) to

*
produce a new search tree having root ¢ with right child r. Only two weights Wi(T) have

10

_ ,)
changed: the weight on c in the new tree is m, whereas in Tn itwas r-1; and the new weight
on r is m-c,whereasin T, itwas m. It follows that the net change in search cost in going

from T;tothenewtreeis _ _
Pc+t)((m-(r-1)) + Pr+t)(m-c)-m).

Since the new tree must have search cost at least as great as that of the optimal tree T: , the
expression above must be non-negative. From this we deduce the inequality
(11) . | Pr+t) <& (m-r+1)Pc+t)/c .

Now examine the subtree with root ¢ in T; . This subtree has r- 1 nodes, and it must itself be

aﬁ optimal search tree, for if not then we could replace it in T; by a search tree with lower search .

cost, and by (7) this would produce a better tree than the optimal T; . By the indﬁcn'on hypothesis

then, we must have P(c +t) /c < ((r- 1) +' 1) P(1 +t)/2 . Combining this with (11) gives
Pe+t) £ (m-r+1)rP(1+t/2.

This can easily be seen to imply the inequality of the theorem.]
Before we prove Theorem 2 we state the following lemma.

LEMMA. For integers n we have the following three inequalities:

(12) n! > 2(n-1! + 3(n-2)! + 4(n-3)! + ... + n(1)! when n 2 4;
(13) (n-2)! > 3(m-3)! + 4(n-4)! + 5n-5)! + .. +_(n-1)(1)! when n27;
(14) d4n-4)! > 6(m-5)! + 7n-6! + ... + n(1)! : ~ when n2>7.

Proof. The induction proofs are straightforward. (]

Proof of Theorem 2. Assume that P(k) =k! and n 2 7. Inequality (a) can be proved by |
x

1

proving it for all oprimal trees. Take any optimal search tree T, with n27 nodes. Then n must

* *
be a leaf of T, for otherwise we have the contradiction that the search cost of T is strictly
greater than 2n!, which by (12) would exceed linear search cost:

(15) - I(n)! + 2(n- 1)' + 3@-2)! + ...+ n(1)!.
Then by the structure of a search tree, the only possible parent of n in T isn-1. The left

- subtree.on n - 1 must be empty, for if not then the weight of the subtreeon n-1 is atleast 3,

- ok
and thus the cost of T isatleast n! + 3(n-1)! + (n-2)' + (n-3)! + .. + 1!, which by

(12), with n replaced by n - 1, exceeds hnw search cost (15). Then by the structure of a search
tree, the only possible parent of n-1 in T is n-2. The left subtrec on n -2 must also be

empty, for if not then the weight of the subtree on n -2 would be at least 4 , and thus the cost of
* . .
T, would be at least

b+ 2m-1)! + 4@-2)! + (-3)1 + .. + 11,
which by (13) exceeds linear search cost (15). Then by the structure of a search tree, the only
possible parent of n-2 is n-3, which therefore has weight at least 4. The weight of the

subtree on n -4 isatleast 1, so the search cost of T exceeds n! +2(n - 1)! +3(n - 2)!

+4(n-3)! + (n-4)!,asstated in Theorem 2. To prove part (b) of Theorem 2, we denve an
upper bound on linear search cost (15) by using (14) in the obvious way. Parts (c) and (d) are
proved by using Table 1 for n <20 (say) and then proving algebraically that the difference
between the upper bound for linear search cost and the lower bound for optimal search cost is less
than one one-hundredth of a percent of the lower bound when n > 20.[]

We now begin our detailed discussion of optimal and near optimal expected cost search trees
when P(k) = bX for some constant b> 1. Along the way we shall state and prove several useful
*

auxilliary propositions. The first gives us a useful lower bound for the search cost Spk (n) in

optimal trees with n nodes. Itis a bit unusual because formula (18) below assumes that we have
used recurrence relation (10) to calculate Sbk (n) for n=0, .., M-1 for some integer M. The

calculations can be numerical, for a prescribed value of b (cf. Table 1), or algebraic (cf. Table 2).

PROPOSITION 1. For each real number b > 1 there exist (non-unique) positive constants oy
and 1 suchthatforall n20,

* ' '
(16) Spk(m) 2 opb?-n-opb -1 = opbt + O(n)
Values for oy and T can be computed as follows: fix any positive integer M ; then let

(17 ™ = min{r + M-+)M : r=1,.,M},

(18) oy min{(S;k(n)+n+rb)/(bﬂ-1/b): n=0,.,M-1}.

Proof. Let b> 1 be given. Fix M. Define 1, and oy by (17) and (18). Then (18) implies
that forn=0,.. ,M-1, : : o

12

. , -
(19) ' Sbk(“) 2 ob(bn-llb)-n-rb.
We shall now show by induction that (19), and hence (16), holds forall n > 0. Take any integer
m2M for which (19) holds for all n<m 1. Toprovethat(19) holds when n=m, note that
by formula (10),
ﬂ; V ’ . %* * :
Spk(m) = min [<rgm { BT m + Sbk(r-l) + berk(m-r)}
2 min j<rcpm {DTm + oyl -1b) - (r-1) - 1
‘ + bl o (BMT - 1/b) - bT (m-1) - bl 7y, }
= op (M -1b) -m -1 +min j<r<py {m-r+1+bl(r-7)}.
This shows that (19) will hold when n=m provided that for all m2M,
min j<r<m {m-r+1+b(t-1)} 2 0.
For this it would suffice to prove that for r=1, ..., M we have
M-r+1+Dbl(r-1) 2

But this is true just by definition (17) of T . This completes the proof that (19) holds for all n .[J

Generally speaking, the larger the value one chooses for M in Proposition 1, the larger the
value one is able to obtain for Gy, although that is not invariably the case.

Next we estimate the cost of binary search. We shall let'Bn denote the binary search tree
corresponding to classical binary search. Its root, of course, is | (1 + n)/2 |. The exact search

costs Sbk (Bp) canbe computed numerically (for a single prescribed b) or algebraically (as
expressions in the variable b) by using the following special cases of equations (3) and (8):

b4 (29) + Sk (Bg-1) + b4 Sk (By) if n=2q,

(20) Spk (Bp) =
‘ ba*l 2q+ 1) + S,k (Bg) + bA*LSx (Bg) ifn=2q+1,

Here we have used the‘flact that wheﬁ n=2q, therootof By is q and the left and right subtees

are Bq.1 and q + Bg, but when n=2q + |, therootis q + 1 and the subtrees are Bq and

q+ Bq . The next proposition assumes that (20) has been used to calculate Sbk (Bp). for

n=1,..2M for some integer M.

14

PROPOSITION2 Assume that P(k) = bk , where b > 1. Then there exist (non-
constants ab By , Yb and Oy suchthat forall n20,

21) _ apb? - 2n - By < Sy (By) < Ybbn'zﬂ-%.
" Values for ay, By, Yy, and Op can be computed as follows: fix any positive mteger M and set
(22) - ap = min { (Sbk (Bn) +2n) /(b - 1/b) : n=M,M+1,...,2M },

unique)

(23) ey = max { ap (bM - 1/b) - 2n - Sk (Bp) : n=0,1,.,M-1},
24) PBp = ap/b + max {0,y },

(25) xp=max{1+2/(elnb), 2b/(elnb)}, »
(26) o = max {(Syx (Bn) + 2n +xp) /(O - 1/b) : n=M,M+1,...2M}
27) Ch = min { ypb™ - 2n - yyb - xp -Sok (Bp) ¢ n=01,.,M-1},

(28) By = vob + Ky + min { 0,8y} .

Proof. We begin by proving the right half of (21). Fix M ;and let xy, vy, Cp , and db be
defined by (295), (26), (27), and (28). Then (26) implies-that

(29) Sk (Bn) < vp (b7 - 1/b) - 2n - xy

forall n=M, M+1, ..,2M.. We shall now show by induction that (29) holds forall n > M.
The base cases are n =M, M+1,...,2M . Now take any integer m > 2M such that (29) holds for
n=M, .., m-1. To prove that (29) holds for n=m , note that if m is odd, then by (20) and the
inductive hypothesis we have -

Syk (Bm) < p(m+1)2 &+ yb(b(m-l)'/2 - 1/b) - 2(m-1)12 - xp
+ b(m+1)/2Yb o(m-1)/2 _ 15y - p(m+1)72 (m-1) - p(m+1)/2 Xp
= yp (M - 1/b) - 2m - xp + [m+1-(xb-1)b(m+1)/2].

It now suffices to prove that m + 1 - (xp - 1)b(m+1)/" < 0. Since xy 2 1+2/(elnb), it

suffices to prove that m + 1 - 2b(m+1)/2 /(elnb) < 0. This can be done by using elementary
calculus to prove that the function 2x - 26X/ (elnb) has maxunum value 0. Similarly, if m is
even, then by (20) and the inductive hypothesis,

pm-r+1 (3 - b—1)b2

bf + bl
b21

A little algebra shows that this is at least as large as the upper bound bm*1/ (b2 - 1) for the cost of
the worst path 1 in T ; the verification uses the fact that b - b3 -120.0

In the interests of shortening the paper we omit the proof that when 1.089 <b < 1.203 the
‘minimax-optimal trees of sizen 2 8 all have root n -3 . The proof runs along the same lines as
that of Theorem 4. Details are available on request.

Acknowledgement. The authors thank Ed Reingold for relaying to them the problem
encountered by Steiglitz and Parks.

REFERENCES

(1] W. J. KNIGHT, Search in an ordered array having variable probe cost, SIAM J. Comput.,
vol. 17, no. 6, December 1988, pp. 1203-1214.
[2] E. M. REINGOLD AND W. J. HANSEN, Daza Structures, Little and Brown, Boston,
1983. |
[3] K. STEIGLITZ AND T. W. PARKS, What is the Filter-Design Problem?, Proc. 1986
~ Princeton Conference on Information Sciences and Systems, Princeton, NJ .

