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August 11, 1979

Dr. N. J. A. Sloane /}'L{‘:ZCD{O

Bell Laboratories
600 Mountain Avenue
Murray Hill, New Jersey 07974

/

Dear Dr. Sloane:
Thanks for your letter of July 31 and the interesting reprints.

I would certainly be very interested in helping you put out
the second edition of the Handbook. This summer is practically all
gone, but I hope you'll keep me in mind for next summer.

I am currently working in Palo Alto for I. P. Sharp Associates,
an international APL timesharing company. I'm doing a little
teaching APL, some writing of programs (high-precision
arithmetic again) and I'm writing a book on elementary number
theory, using APL as the notation. The point of view is very
computational, which leads to non-standard treatment of a very old

L_ subject.

The above address is good until September 10, 1979, after
which date I'll be a first-year graduate student in mathematics at
the University of California at Berkeley. Any mail addressed
to the mathematics department at Berkeley should probably
reach me (the zip code is 94720).

Enclosed are some new sequences which can be found in
my article in the latest issue of Journal of Number Theory.

Sincerely,

Gff2y o Vst i

Jeffrey Shallit



L7

asen, J. Reine Angew. Math.
malbasen fiir die Menge der
214/215 (1964), 395-398.

naximal asymptotic nonbases,
ses in additive number theory,
ro, J. London Math. Soc. 15

der niturlichen Zahlenreihe,

tation of a number as a sum
Ser. Fiz.-Mat. No. 4 (1960),

o density, J. Number Theory

e = i 5.

Qet T

Simple Continued Fractions for Some Irrational Numbers
JEFFREY SHALLIT

Department of Mathematics, Princeton University, Princeton, New Jersey 08540
Communicated by K. Mahler
Received April 18, 1977; revised July 1, 1978

It is proved that the simple continued fractions for the irrational numbers
defined by

21
Z oy (¢ >3, an integer)
k=m0

and related quantities are predictable, that is, have a definite pattern. The proof
uses only elementary properties of continued fractions. The nature of the partial

1. INTRODUCTION

The continued fraction for a real number x is an expansion of the form

1

X =aq, + ]

a, + eee

a; -+

where the a’s are positive integers, except for a,, which is an integer. The
a@’s are called the partial denominators of the continued fraction.

It is well-known that the continued fraction for x terminates if and only
if x is rational. On the other hand, if the continued fraction is infinite, and
the a’s are periodic after some point, then x is a quadratic irrational.

There are also well-known patterns in the expansions for e, €%, tanh 1/k, etc.

The purpose of this paper it to announce a new result concerning continued
fractions; namely, that the continued fraction expansions for the irrational
numbers defined by

@

1 .
D - (¢ = 3, an integer)
k=0 I

and related quantities are predictable, that is, have a definite pattern.
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2. ELEMENTARY PROPERTIES OF CONTINUED FRACTIONS

We write i
Poldn = ao + i

a; +

1
a
S i a.
=ay,a,a,,..,a,]

We call p,/q, the nth convergent.

Now we recall some of the elementary properties of continued fractions,
which are well-known and easily proved (for example, see Perron [1] or
Hardy and Wright [2, p. 129].

CFl: Letp,/q. = [a,, ay ,..., a,]. Then

Pn = QuPn_1 + Dns (n = 1) Dby = 1: Do = qy
9n = Audn + Gns (n = 1) 91 = 0, 9o = 1

CF2: DPndn—1 — Pnaqn = (_l)n—l

CF3: The continued fraction for a real rational number x is unique,
apart from the fact that if a,, > 2, then

x = lay, a,...,a,] = [ay, a1 5oy ap, — 1, 1]
CF4: The convergents are always in lowest terms.
CF5: 1f po/q, = [a, ay ..., a,] and ry/s,, = [by , b, ..., b,,] then

Pn1Sm + Dulm
Qy, Ay yeeey A s by, by ..., b, ] =221 - O
[ 0 1 n 0 Y1 m] qn—-lsm _|_ Gul'm

CFé6: 1If p,/q, = [ay, a; ,..., a,] then

[an s Qp 5eees Aoy al] = qn/qn—l

3. A THEOREM
THEOREM 1. Let
L 1 1
B(u, v) = — =—F 5+ o+
u u

k
k=0 u®

(u = 3, an integer). Then
(A) B(u, 0) = [0, u]
B, 1) =[0,u—1,u+1]

(B)” 1€ Bu, v) = [ay » @y ».r @] = Pu/qs then B(u, v + 1) — [ap, ay ...,

Qn_1, dn + La,—1, Ap_1s Ang ey Qs 5 1]

P
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Proof. Part (A) is easily verified by a short computation. Let us prove
part (B). We have

[ao > 15 Qg yenny an—l] = pn—l/qn—l
[ao 2 Q15 Qg ey Ay, Ay + 1] = (pn + Pn—l)/(qn + gny) (CFI)
lay,ar,a,,.., a0 ,,a, + 1,a, — 1]

— (an - 1)(pn + Pn—1) + Pn
(an - 1)(% + qn—l) + In—1

[an—l > p_g 5eeey g al] = qn—l/q-n—-2 (CF6) (2)
Applying (CFS5) to equations (1) and (2), we find

(CF1) M

[,a1,., 83,0, +1,a, — 1, Qp gy An_g sy @]

— (pn + pnfl)(qn—z) + [(an — l)(Pn + pn-l) + pﬂ—l](qn—l)
(gn + gn1)(Gn-s) + (@, — 1)(gn + gn_y) + gn-1)(Gn—1)

— Pndn—s + Pn1q9n—2 + QA Dn9n1 + AnDn1q9n-1 — Pnln—y

Indn2 T Duslnz + 0,9,9, 1 + 0,05 — 4,9, @
From (CF1), it follows that

(Pn = Pnos) Gn1 = @ Pu 190y “4)
(n — Gn-2) Pa = GnPngny &)
(9n — 9ns) 9n = AnGngn 4 ()
(n — Gns) Gny = auginy (7

Substituting equations (4)—(7) in the right side of (3), we obtain

lag, a,sany,a, + 1,0, — 1, An_y s Qng sy 4]

— PraGny — p;n_;qn_l + Pndn ®)

At this point, let us assume that » is even—an assumption which will later be
verified by induction. Since » is even,

Prna9n—29 — PnoGny = (_ 1)n—2 =1 (CF2) (9)
Substituting (9) in the right side of (8), we find

[au s Ay 50y Ay, Ay ++ 1, a, — 1, p150n_g,..., a1] = %
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We now show that g, = u2". We have

Pn/% = B(ll, D)
1

ok

Me

k=0 U

]

u?

where R = Y;_, u'*—2. Now R is not divisible by u (and therefore not by
u?’) since

R=1+4+u ”il u@-2-0,

k=0

Hence p,/q, = R/u¥ in lowest terms. Applying (CF4), we conclude that
gn = u%.
Therefore,

[ao 5 Q1 5000y Ay 5 g + 1, a, — 15 Ap15 p_3 500y al]

_ Pndn T 1
gn®

_Pn o, 1
dn Jrqn2

1
= B(u, v) + W

1

v+1
u2

= B(u, v) +

= Bu,v+ 1)

as was to be shown. (CF3) ensures the uniqueness of the result. Note that
the continued fraction for B(u, v 4 1) given in (10) has a total of 2n + 1
partial denominators while the continued fraction for B(u, v) has n + 1
partial denominators.

We may now justify our assumption that »n is even: the assumption that
the continued fraction for B(u, v) has an odd number of partial denominators
(n even) leads to the proof of part (B) and the fact that the continued fraction
for B(u, v + 1) also has an odd number of partial denominators. But the
continued fraction for B(u, 1) has 3 partial denominators, so that the proof
of part (B) 6f the theorem is now complete, by induction.

P
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At this point it should be stated that the conclusions of Theorem 1 essen-
tially hold for # = 2. However, we run into the difficulty that some of the
partial denominators may be 0. When this occurs, we can transform the
continued fraction using the following equation

[ao s QY yeury Qg 0, Ari1 ,...] == [ao s Ay 5eees Ay + Qi1 5 Arto ,...]

4. FURTHER RESULTS

THEOREM 2.  The continued fraction for B(u, v) has 2° + 1 partial denomina-
tors.

Proof. This follows immediately from the remarks in the last paragraph
of the proof of Theorem 1.

THEOREM 3. B(u. ) = Yy, 1/u?" is irrational for integer u > 2.
Proof. We write the base-u expansion of B(u, o) as
.1101000100000001...(,,

with I’s in the first, second, fourth, etc., places. This expansion neither
terminates nor repeats. Thus B(u, o) is irrational, and its contined fraction
expansion does not terminate.

THEOREM 4. The first 2° partial denominators of the continued fraction
Jor B(u, v) are identical with those of the continued fraction for B(u, ).

Proof. Examination of part (B) of Theorem 1 shows that the first 2°
partial denominators of the continued fraction for B(u, v) are identical with
those of the continued fraction for By, v + 1), which are identical with
those of the continued fraction for B(u, v + 2), etc.

We observe that repeated application of part (B) of Theorem 1 thus
generates the partial denominators of the continued fraction for B(x, o). For

example, we find for u = 3: ﬁL,» :2 o0

B(3,0) = {0, 3]

B3, 1) =10, 2, 4]
B(3,2)=10,2,5,3,2]
B(3,3)=10,2,573,3,1,3,5,2]

—
BB, ) =1[0,2,5331,3,5231,5,3,1,.] MB
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For u = 4, we find
B4, ©) =1[0,3,6,4,4,2,4,6,4,2,6,4,2,..]

Comparison of the two preceding continued fractions leads to the following
theorem.

THeOREM 5. If B(u, ) = [ay, a,, a, ,...] then B(u + b, ©) = [a,, a, +
b,a, + b, a;+b,...] u=>=3,b2>=0).

Proof. The proof follows easily by induction.

Note that this theorem implies that once the continued fraction for B(3, o)
is determined, it is trivial to calculate the continued fractions for B(4, o),
B(5, ), etc.

THEOREM 6. Using the terminology of Maurice Shrader—Frechette [3], we
define the mass of a rational number x, M(x), as the sum of the partial denomina-
tors of the continued fraction for x. That is, if x = [a,, @ , Q5 ,..., a,], then
M(x) = Yo o ax . Then M(B(u, v)) = u - 2°.

Proof. From part (A) of Theorem 1, we see that

M(B(u, 0)) = u
M(B(u, 1)) = 2u.

Part (B) of Theorem 1 implies that M(B(u, v + 1)) = 2M(B(u, v)) since
a, = 0. The desired conclusion follows by induction.

Looking at the continued fraction expansions after Theorem 4 leads one
to ask if these expansions ever repeat. In fact, they do not, as is shown in the
following theorem.

THEOREM 7. B(u, o) is not a quadratic irrational.

Proof. We know that a number is a quadratic irrational if and only if its
continued fraction expansion is infinite and periodic after some point. We
will show that the assumption that the continued fraction for B(u, o) is
periodic after some point leads to a contradiction. Assume that the length of
the repeating portion is r terms. We may also assume without loss of generality
that the repeating portion begins with the partial denominator a,.., , where
r < 2%, Thus, we have

Qjrrs = s (Jr+s,s22"+ 1) an

It is easily verified that the following two equations are consequences of
part (B) of Theorem 1:

a2n+1+l - azn+1 —2 (12)

T g = G, (< x <21 — 1), 13)
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The length of the repeating period, r, must be at least 2 since the middle
terms of the derived continued fraction given in part (B) of Theorem 1

v @y +1,a, — 1,...

are evidently different. Thus, let us substitute x = r — 1 in equation (13) to
obtain

Aon+1y, = Qoni1_p g - (14)
Putting s = 271 4 1, j = —1 in equation (11), we obtain
02n+|_r+1 = a2n+1+1 . (15)

Combining equations (14) and (15), we find

a2ﬂ+1+,. = Qgni14y (16)

Again, putting s = 2"+, j = 1 in equation (11), we see

Qgniry, = Qyniy - (17)
Combining equations (16) and (17), we find

Aynir = Qyuiayy - (18)

We see that equation (18) contradicts equation (12). Thus, no such repeating
portion can exist and B(u, o) cannot be a quadratic irrational.

In fact, B(u, ) is transcendental, as is shown in Schneider [4, p. 35].
(The author would like to thank W. M. Schmidt for pointing out this refer-
ence.)

THEOREM 8. The continued fraction for B(u, o) consists only of five
unique partial denominators: 0, u — 2, u — 1, u, and u + 2. The distribution
of the partial denominators for B(u, v) is as follows (u > 2):

Partial Number of
Denominator Occurrences
0 1
u—2 202 — ]

u—1 2
u 2vt — 1
u-+t2 202

Proof. The proof follows easily by induction from part (B) of Theorem 1.
Theorem 8 immediately implies the following:
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"THEOREM 9. The partial denominators of the continued fraction for
B(u, ) are bounded.

A theorem of Khintchine [5, p. 69] states that the set of all numbers whose
continued fractions have bounded partial denominators in (0, 1) is of measure
zero, so Theorem 9 is a little surprising.

A theorem of Kuzmin [5, p. 101] says that for almost all real numbers,

i v g )k —
}(‘j’g (@a, **+ ay) K

where K = 2.68545. This theorem fails to hold for B(u, o), since Theorem 8
gives
(@5 @)% = [(u — 1)2(u — 2)*/4-Dylk2-D(y | 2ye/s]L/k

for k = 2v. Letting k — o0, we see that
Llj];lo (@as - a )% = [u¥(u — 2)(u + 2)]'* # K.

Although Theorem 7 showed that there is no repeating portion in the partial
denominators for B(u, o), nevertheless, certain partial denominators occur
with regularity, as shown in the following theorem.

THEOREM 10. If B(u, ©©) = [ay, @y 5..., Gy »...] then a, =u + 2 if n=2
or 7 (mod 8), and a, = u if n = 3 or 6 (mod 8).

Proof. The proof follows by induction from part (B) of Theorem 1.

Similar theorems can be proved if the mod (8) in Theorem 10 is replaced
by mod (greater power of 2).

The following generalization of Theorem 1 will be stated without proof,
although the proof is virtually identical to that for Theorem 1.

Let us consider the continued fraction for u!B(u, v) where ¢ > 0. Let ¢’
be the least non-negative integer such that 2*" > r,

THEOREM 11. Let ¢ =u'B(u, v' — 1) (put ¢ =0 for v' =0), and let
d=2" —1t.
Then

(A) wB, v) = [, w] \?
uBu, v + 1) = [c,ut — 1, 1, ut — 1, u9] j;

and =

(B) for all v > D’ + 11 l_f utB(u’ U) = [aO’ Qg seeny an]s then utB(u, \(

v+ D=lay,a,.,a,,ut —1,L,a,—1,a,4,a,_4,.., ay, a] 6 ' ;5

For exampi'é,/,repeated application of Theorem 11 gives 45B(4, c0) = [324,
63, 1, 1023, 64, 1023, I, 63, 1023, 1, 63,...] Theorem 11 implies statements

"o i

c ‘
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about u!B(u, v) similar to those about B(y, v) given in Theorems 2-10. One
particularly interesting consequence of Theorem 11 is obtained for 7 =1,
u = 2. We find A

2B, ) =[1,1,1,1,2,1,1,1,1,1,1,1,2,1, 1, 1,...] 6 %6

and the centinued fraction consists solely of 1’s and 2’s.

The following theorem, stated without proof, says that the continued
fractions for
1 1 (-1

2

_ vy &DF 1 1 _ .
C(u,v)—kZ:‘,o T u 2T A + s

are similar to those in Theorem 1.

THEOREM 12,
(A) C(u,0) = [0, u]
Cwu, ) =[0,u+1,u—1]

(B) I.f C(u’ U) = [ao >4y, Ay 5.y an] then C(u’ v + 1) = [ao > Q15005
An_y15 An — (_1)"’ an + (_l)v’ Ap-15 Qn_g s-+ey al]'

Thus, for example,
C(3, w) = [0, 4’ 3: 1’ 3: 5’ 13 3’ 59 3: 3, 15 53 39 1""] 6 4_67

Theorem 12 has consequences similar to those stated in Theorems 2-10.
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