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jeaves n unchanged. Note that after Gl is reducer‘ Gi that G!
1

(F “n Maurer [3] graphs G with 2" cycles are called cycle-c “te,
can be further reduced by a type III or IV reduction, ucpending upon

Such graphs are characterized in Maurer [3] and in Mateti and Deo [2) as

follows. Graph G can be reduced by deleting any vertex of degree one whether or not Wy and w, are adjacent. Thus all vertices of degree

or, if G contains a vertex u of degree two which is adjacent to two can be eliminated, Hn can be assumed to only have vertices of

vertices v and w with (v,w)#E(G), by replacing u by the edge (v,w). degree three, and the proof is complete.

THEOREM 1. Graph G is cyele-complete if and only if G is reducible The structures indicated in Figure 1 led us to consider the followi
to K K -e, K, or K, ; ptzza graphs Hm which, as will be discussed later, in general fail to
3’ 4 3,3°

It is our belief that ¥(n) essentially drops from the upper bound

maximize V¥, but do give us our best general lower bound.

i Let H be the cubic graph with vertex set {vl,. ..,vzm}, mz2 2,
of 2%-1 to one-half of this value. That is, ¥(n) 1s approximately

2n_1 and edge set Elu E2 where E. = {v_ v 1,i=l,...,2m} and

1 1 i+

E, = {v vi+m,i=l,...,m} (subscripts to be read modulc 2m). The members
THEOREM 2. For every n > 3 there exists a cubic graph G with of E, will be called the chords of H .
q-p+l = n and ¥(n) = ¥(G). THEOREM 3. Each member of E; 18 contained in 2m_1+[;] + 1 cycles of
Proof. Assume H_ is a graph with q-p+l = n and ¥(a) = W(Hn)' { ., each memger of E, is contained in 2™ T+2m-2 cycles of H , and
Suppose Vv 1s a vertex in H adjacent to vertices U sUpseee sty If 1 W(Hm) 24 w1,
d = 4 one can vertex split v as follows. Let H' be the graph j Proof. Given a set of k chords, the number of cycles containing this
obtained from H b deleting vertex v and the d edges incident set of chords and no other chords is 2 1if k =2 or if k 1is odd,
with it, adding new vertices v, and v,, and adding edges ;] and 0 otherwise. It follows immediately that H_ has
(vl,vz),(vz,u3),...,(v2,ud), (vl,ul) and (vl’uZ)' It is easy to see ; n m
that W(H') > W(H»), and one can therefore assume every vertex in Hn has B l[g] + Z[ii + 2[?] + = 3[ ] [i (-1) ] =20 4 m2 -m+1

degree at most three.

If Hn has a vertex of degree one, or a vertex of degree two cycles.

Furthermore, each chord lies in
w1, fm-1) , ™t (w1 K 1
2 +2 + (1+ DY =277+ 22
0 1 k=2 k

Now, given a member e of El and any k chords, 1 <k < m,

there is just one cycle containing e and the chords if k 1s odd and

adjacent to two nonadjacent vertices, then Hn can be reduced as
described for Theorem 1, and the value of ¥ would not be changed. We
may assume then that Hn has no vertex of degree one and any vertex of
degree two is contained in a triangle.
cycles.
Assuming H has a vertex u of degree two, then Hn contains one
of the four structures indicated in Figure 2. The following formulas

none if k
are easily verified. is even and greater than 2 so that e 1is contained in

ol AL

¥(G!) = ¥(G,) + ¥(G,;a) m
1 1 1° m m m 1 m k m-1 m
+ = - (- =

R [0 B35 [ o] -
lP(G?_) = W(Gz) +3 W(Gz,a) k=3

Cycles.
Y(Gé) = W(G3) + W(G3;a) ®

2 Since n = mtl in Bm, we obtain the following lower bound for

¥(G,) = ¥(G,) + k, g 1.

where k is the number of cycles in G, through both a and b. In COROLLARY 4. ¥(n) 2 PPN S

each case, ¥(Gj) = ¥(G ) and p and q are each reduced by onme, whiCh
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'r“xact value of Y¥(n) has been determined for 3 < < 8 by

exhaustively counting the total number of cycles in every cubic graph of

order 2 <m < 7. This counting was facilitated considerably by

the valuable tables compiled by Bussemaker et al [1]

2m,
The results are

presented in Table 1 along with the ratio W(n)/Z

¥ (n) ‘i’(n)/zn—1 Extremal Graphs
3 7 1.75 Hz = K4 = 3-cage
4 ' 15 1.88 H3 = K3,3 = 4-cage
5 29 1.81 H,
6 57 1.78 Petersen = 5-cage
7 109 1.70 #84, #85 of [1]
8 213 1.66 Heawood = 6-cage
13 25608 21.37: McGee = 7-cage ?
15 221200 >1.30 Coxeter [u4] ?
16 241400 21.26 Tutte - Coxeter = 8-cage ?

Table 1. Some established and conjectured values of ¥(n).

We believe the lower bound obtained in Corollary 4 to be asymptoti-~

n-1
cally correct in view of the decreasing ratio Y¥(n)/2 and other
computations to be discussed later.

n—- 1

CONJECTURE 1. ¥(n) ~ 2

In attempting to reduce the obvious upper bound 2%-1 we tried to
by observing that for any graph G containing
W(G-e) + ¥(Gse).
¥(G;e)

show that ¥(n) < 2 ¥ (n-1)
an edge e, one has ¥Y(@G) =
edge e for which Y(G;e) s = T(G), then
consequently for any graph G with q-p+l = n one has

¥Y(G) y(G-e) + ¥(Gse) < 2¥(G-e) s 2¥(n-1). Therefore one would have
¥(n) < 2¥(n-1). If any vertex V has degree at least four,

clearly at least onme of the edges incident with v is in at most half of

Thus, if one can find an

< ¥(G-e) < ¥(n-1), and

then

A

the total number of cycles. This led us to the following conjectures.

CONJECTURE 2. with minimum
§(G) =

In any graph G other than K, and K3,3

degree 3, there is an edge e with V¥(G:e) < ¥(G)/2.
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CONJECTURE 3. In any graph G other than K, or K3 3 " minimaem
§(G) 2 3, for each vertex v of G there is at leust one edge

incident with v for which Y(Gi;e(v)) < ¥(G)/2.

degree
e(v)

Theorem3 shows that Conjecture 3, if true, 1s best possible in that

two-thirds of the edges of Hm are in (barely) more than half of the

cycles so that exactly one of the three edges incident with a vertex is
in at most (indeed, less than) half of the cycles.

For n=3, 4, 5, 6 and 8 there is a unique extremal cubic with

¥(n) cycles and in each of these cases that unique extremal graph is the

‘(unique) cubic of‘order 2n-2 with maximum girth. For n = 7 there are

two cubics of order 12 that have (maximum)

both of these graphs and no others have Y(7)

girth 5 and, indeed,

cycles. Perhaps these

circumstances warrant the following conjecture.

CONJECTURE 4. The cubic graphs of given order with the maximunm rnumber of

eycles are precisely those with maximum girth.

If this conjecture is correct, then three computations performed for
us by Curtiss A. Barefoot (to whom we express our thanks) are of interest.
He determined the number of cycles in the McGee graph, the Coxeter graph,
and the Tutte-Coxeter graph; these numbers are included in Table 1 and

would lend support to Conjecture 1 given that Conjecture 4 is true.
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