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(1.2) g2 1+ X2 () i

And it is trivial, by a céunting argument, to obtain the bound

D = (/)

If we specialize these three bounds to the case p = 2, we have the

9 lower bounds

(1.4) W=1+ V;—k(Bk—vH.) , ]
2
(1.5) 5K=1+%, E-: ﬁ
—_—
A
(1.6) C = v(v-1) /k(k=-1) L) A
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It wa:lhown (see [2], or, for more detail, [3]) that the SK bound
(1.5) easily produces the Erd¥s-de Bruijn Theorem.

In this paper we introduce the numbers
k
g( )(1.2;v) = g(k)(V)

as the cardinality of the minimal family of sets that covers all pairs,
given that the elemeats are from a v-set and that the size of the longest
block in a covering family is k. When the argument v is obvious, we

simply write g(k).

2. An Example.

Suppose that we take v = 13; then we can construct the following
table. The values g(k)(1,2;13) for k > 6 will be justified in the

next section. Note that

W= 1+ 23131 (k-4),
sc- 1 A0
C = 156/k(k-1).
k g(k) W SK C
13 1 1 1 1
12 13 13 - 13 2
11 22 22 22 2
10 28 28 26 2
9 31 31 28 3
8 31 31 28 3
7 28 28 26 4
6 24 22 22 6
5 19 13 18 8
4 13 1 13 13
3 26 neg 26
2 78 neg 5 78

For k = 2,3,4, the values follow from using the set of all pairs;
from using the triple system on 13 elements; and from using the

projective geometry on 13 elements.

3. The Comstruction of a System for Large k. !
Suppose that k = v-2a; then the Woodall bound is
W=1+ a(2v-6a+l) .

Now take a complete l-factorization of the 2a points not contained in
the block of length k. Form triples by assoclating all pairs in any
1-factor with the same point in the block of length k (this can be done
so long as the number of l-factors, which i1s 2a-1, is not greater than
v-2a). Use all pairs not contained in the block of length k or in the
triples. Then the total number of blocks is

L+ Qu-Da + (3) - (";2") - a(20-1)3

=1+ a(2v-6a+l) = W.

The condition 2a-1 < v-2a simplifies to

a < (v+l)/4.

Thus k 2 v-(v+l)/2 (v-1)/2, and we have

THEOREM 3.1. If v-k <s even, then the Woodall bound gives g(k) for

k 2 (v-1)/2.

For v-k odd, we need a different factorization of the pairs on
the v-k = 20+l points. The easiest way to get the complete l-factoriza:
of an even number of points (take 8 as an example) is to place 1 at the

centre of a circle formed by the other 7 points, as shown in Figure 1.

Figure 1: I1-Factorization of KB'



The first l-factor {s found by taking (1,2
own. The other 1-factors are found by rotating this

) and the three perpendiculat

chords, as sh
j-factor about 1.
we can

Similarly, if there is an odd number of points, Say 7,

place them on the circumference of a circle with centre 0.

The first "i—factor" 1is found by taking "L", joining 0 to L, and taking

the chords perpendicular to (0,1). By rotation, we get 7 generalized
1-factors.

Now we make a construction analogous to that in Theorem 3.1. We
form triples by taking all pairs in a l-factor and adjoining the same

point from the k-block. This is possible so long as

2041 <€ v-(20+1) ,

that is, so long as
a < (v-2)/4

or
k 2 v-(v-2)/2-1 = v/2 .

The number of pairs needed to cover all pairs is now found as

() - (37

= 2va-8u2-6a+v—l.

- 3a(2a+l)

So the total number of blocks is this number increased by 1+a(2a+1) ,

that is,

2va-6a2+v-5u .

But we easily calculate that

8

]

=
n

D

1+ ZE%£(3V~6G-3—v+l)

1]

1 + (2a+l) (v-3a-1)

2uv—6a2+v-5a.

We thus have

THEOREM 3.2.
k =2 v/2.

If v-k is odd, then the Woodall bound gives g(k) for

These two theorems are easily merged into

THEOREM 3.3. If v = 1 (mod 4), the Woodall bound holds for k > (v-1)/-
the Woodall bound holds for all k 2 (v-1)/2.
20O = 1+ (v-k) Gk-vH) /2.

otherwise, Thus, for k

in these ranges, we have

Actually, we can go a bit farther. If we use (2.1) and (2.2) fror

{31, it follows that, with t = 2, the Woodall bound W 1is only attain
if k
z i) -0,
A(0)

A(0)

{s the set of lengths for these blocks.

where is the set of blocks disjoint to the block of length k, {:

Thus, we have the result that a:

other blocks meet the longest block.
k,-2

5 (; )=0,

AL

Furthermore, it is also required tt

and this shows that the blocks meeting the longest block in 1 point
(all others) have cardinalities 2 or 3. Thus we have
THEOREM 3.4. The only configurations producing the bound W are those
using pairs and triples, as described earlier in this section.

4. The Values k=2 and 3.

It is trivial to note that

().

(3)

Also, it is clear that g is obtained by taking as many triples as

possible; now this number (see, for example, [5]1) 1is



D(2,3,%) = [%[—;iﬂ -6,

is
[x] denotes the greatest integer not exceeding X, and o

It follows that we can state

where

the congruence class of v, modulo 5.

3)
2) .. (v is
THEOREM 4.1. The value of 8 is (2>, and the value of g

(;) ) 2[%[%]] + 26 ¢ .

It is useful to record g(3) according to the form of v. We

give two alternative forms.

Y ) @

6t 6t2+t v(v+l) /6
6e+l 6t2+t v(v-1)/6
6t+2 6t2+5t+l v(v+l)/6
6t+3 6t2+5t+l v(\zz-l) /6
6+ 6t2+9t+h (v2+v+4) /6
6t+5 6t2+9t+6 (vE-v+16)/6

Using the results proved so far, we can £111 in the following table.

J 2 3 4 5 \ 6 \ 7 8 Lg 10 11 12
K
' / | 2 1 3 6 | 10 | 15 \ 21 | 28 \ 36 45 55 66
GiRY | F~ || 4 6 7 7| 12| 12 19| 2 26
B - w| 12%| 13%| 13%
L18S ~———1> o | s g | 10| 11| 12 1 Lot
oo s 1S 3| 6| 0] 13| 15 | 16 | 16
6 - 1 ] 12| 16 | 10 21 22
7 1l 8| 14 19 23 26
8 1 9 | 16 22 27
1| 10 18 25
9 1 11 20
N 1 12
i -
1
12

; some
*he starred values do not follow from our theorems; rather we need

»asy Lemmata.

LEMMA 4.2. g(a)(9) = 12.

Proof. The SK bound is 11; also it 1is clear that

1234 189 368 269 459 35
1567 258 478 379 27 46

provides a cover in 12 blocks.

If a pairs, b triples, c¢ quadruples, provide a cover in 11

blocks, then

atb+c = 11, a+3b+6c = 36.

It follows that 2b+5c = 25, and we have one of 3 cases:
(1) ¢=5, b=0, a-= 6
(2) ¢=3, b=5, a-=3;
(3) e=1, b =10, a = 0.

Case (1) is impossible, since D(2,4,9) = 3. Case (2) 1s not possible sin
1234, 1567, 4789; then we can not have 5 triples. And Case (3) i
impossible since the quadruple 1234 leaves 5 symbols to go with 1, and

hence the use of triples only is impossible.

we get

Indeed, Lemma 4.2 generalizes trivially to the result.

LEMMA 4.3. If v = t2, then g % (v) 2 t2+t(t 2 3).

Proof. It 1s clear that

2
g(t —2)(v) = 26245t 24t

by using Theorem 3.3.

Also, the counting bound shows that
t
g( )(

Finally, the SK bound gives

2,2
g(:+1)(v) >1 4+ (t+l)2(t ~t-1)
t -1

that is,

g(t+l)(v) > tzﬂ_tzTl .
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This shows that

curve

between k = t+l

LEMMA 4.4.

!
i

3 and the result for t = ’ :

g(E) () = 24 for t> 3,

follows from Lemma 4.2.

din
The general result then follows from the shape of the boun g

2 2 23

K-k _ g 4 k°(t

SK=1+-7 ——___:2—1
2

and k = t 2.

¢ (10) = 12.

Proof. The SK bound is 12, and the cover

1234 258 26T 279
1567 369 378 468
189T 47T 459 35T

is trivially obtained.

Lpea 6.5, gan = 13.

n affine geometry on 9

Proof. Again, the SK bound is 13. Simply, take a : "
. a
ints, adjoin T and E to two resolution classes, and add the p
points,
{1,E}.

4
Lo 4.6, g2 = 13.

t from
Proof. The SK bound of 13 is achieved by deleting 2 single poin
the 13-point geometry.

H is eas
For g(s)(lZ), matters are slightly more complicated; 1t 1s y

to get the SK bound of 17 and the construction
64
12345 T62 E63 V75
16789 T73 E74 V82
ITEV T84 E85 Y
T95 E92 v93

(5) .
along with pairs 65, 72, 83, 94, shows that g (12) < 19

92

Now blocks 12345, 6789T, imply at least 2 +/‘ 27 blocks.
12345, 16789,
can be only one block of length 5 if g()(12) < 19. Let this block

Blocks imply at least 3 + 16 = 19 blocks. So there

be B = {89TEV}. Then use a pairs, b triples, c¢ quadruples, and
we have
atb+c = 16 + 8§ (6§ = 0 or 1),
a+3b+6c = 56.

Then 2b+5c¢ = 40 - §, and we have cases:

(1) 6§6=0; c=6,b=5, a=>5

(2) §=0; ¢c=4,b=10, a=2

3) §6=1; c¢=7,b=2, a=38

(4) §=1; c¢c=5 b=17, a=35

(5) §=1; c¢=3,b=12, a=2.

Now no quadruple is disjoint to B, or we would have at least 2 + 20 = 22
blocks. 1If there is at most one quadruple through any point of B, then
¢ £ 5; also, if 2 quadruples pass through one point in B, we find that

only 3 more are possible. This rules out Cases (1) and (3).

In Case (4), our 5 quadruples use up 5 triples from A = {1,2,...
So we can only get triples by using an element from B with a pair from
A; since only 21 - 15 = 6 pairs are available, we can not meet the

requirement b = 7.

In Case (2), we only need 4 quadruples. This leaves 9 pairs free
in A; but, even using all of them, we can not get 10 triples.

Hence, we need only consider the case
a=2, b=12, ¢ =3; §=1.

This can only occur if 3 triples from A are used for quadruples and the
other 12 pairs from A are used to form triples. Then each point in B
must occur with 3 or 1 points from A; hence the distribution of lines
through the points of B is 3(l quadruple, 2 triples), 2(1l pair, 3 triple:

We may thus form the blocks:
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89TEV, 8123,
845, 867;
9146, 925, 937.

T157, T24, T36, then we are forced to have El and
Thus

If we now take
vi. Triples E26, E35, E47 are available; so are V27, V34, V56.

we have achieved a construction and established

LEMMA 4.7. g (12) = 18.

5. The Case v = 13.

It will be useful to give a slight strengthening of the SK bound
before we complete the Table in Section 2.
we see that the SK bound comes from

AO‘

From the derivation in [31],

using a positive variance and omitting the set Thus we have

LEMMA 5.1. If the SK bound is an integer and if it gives the ezact
value of g(k), then all other blocks meet the block of length k and all

of these other blocks have the same length t.

Indeed, it follows at once that these other blocks form a BIBD
t-1, A =1, and this BIBD is

It further follows that t-1

with 1+k(t-2) varieties, block size
resolvable into

divides k-1.

k resolution classes.

If t =2,

There are 3 obvious cases in which the bound 1is exact.
-l

If t=k,

then Vv

1f

then v = k+1 and we have a near-pencil.

and we have a projective geometry (in appropriate cases). t =3,

then k = (v-1)/2 = 2mtl, and we have one of the cases

and v = 4urt3,

covered earlier.

= = 2m, we have SK = 1+(v2—1)/8.

4mtl, k = (v-1)/2
2m+l points not in the long blocks can not be

if v
This is an integer, but the

However,

partitioned into pairs to form triples. Thus Lemma 5.1 gives us

then the number of blocks strictly

BEMMA 5.2. If v = 4mtl, k = 2m,
exceeds the bound 1 + (v2-1)/8.

——

s ’
Now consider g( )(13). The SK bound gives g(5>(13) > 18. An

easy construction

= 1234, © 5678, = 9TEV
159 25T 35E 45V
16T 26E 36V 469
176 27V 379 47T
18V 289 38T 48E

shows that g ) (13) < 19.

(5)
If g (13) = 18, we first note that any other block must meet th
initial base block B {» 1234}. For using the exact relation (2.5) from
(3], we find that the number of blocks is at least

1+ - 200
12 - = 3
4(30+“b0+6c0+10d0)
h t i i
where there are 3, blocks of length 2 disjoint from the base block, b0
blocks of length 3, etc. f i
c. (of course, it is clear that cO = d0 = 0). Even

a; = 1, bO = 0, gives a bound of 19. So we find that all blocks meet the

base block.

If there is a second block of

3+ 16 = 19 blocks.

length 5, we can immediately form at

least

So tak
o e a pairs, b triples, ¢ quadruplec
a+b+c=17
a +3b +6¢c = 68.
Then 2b +5¢c = 51, whence we find:
(1) b=3, ¢=9, a=35
(2) b=8, ¢=17, a=2

There can be at most 2 quadruples through any point oﬁ B. From this
we fq . )
nd there is no distribution of pairs and triples to points of B that

works in Case (1) or Case (2). Hence we have

B 5.3, ¢O)

(13) = 19.

We now move to the case k = 6 and use Lemma 5.2 to give the bound o

Act (6)
ually g "’(13) = 24; this is a special case of the result

95



e S sme—m—— o N e

. _ . ”ﬂ‘
j g(Za) (4atl) = Za2 +a+1+ Falz'l “ For k t+l, we use SK and have ]
2
which will be shown in a forthcoming paper on graph factorization. g(k) (v) > 1+ t2: +e (tﬂ)z
t +tte
Val (k)( ) which are near v 4 . 3 2
6. alues of g v . -1 +£ +2t " +(e+l)t " +2et+e
k 2
Let us return to Section 2 and plot g( )(v). t +tte
(k) =1+ t2 4 p 4 o(tHD)
g - . ) t +t+e
¢
i L For k = t+2, we have
L 2,2
t+2 t +e-1
g (v » 1 4 (R (L el
- t +tte
B = l+t2+3t+ (t4+4) (e=b)
t +tte
B Clearly, the only exceptions that can occur are for e=0(t=2,3,4,5),
I e=1(t=2,3,4), e = 2(t=2,3).
! 1 1 ! 1 § 1 i 1 | | 1 R For k = t, we use the C bound and have
k
(k) (t2+t+l+e) (t2+t+e)
g T(v) 2
t(t-1)
2
(k) = t24at42ets + Laetb)et(e +e)
Ignoring the case when k = v, which is trivial, we note that g is tc-t

1 h t th . Indeed rove
usua 1y much greater than v ndeed we can p Thus we have g(k) v) 2 t2+3t+1 unless t and e have certain small

values, so long as k # t+l.

THEOREM 6.1. If v = t2+t+l+e, where 0 < e < 2t+2, and if g(k) ) > v,

COROLLARY. If v = t2+t+l+e, k = t+l, g(k) v) < t2+2t+1, then the number
of blocks of length t+l is at least (t+l)(t+2)/2.

then (with a few small exceptions)

g(k) (v) 2 t2+3t+1
unless k = t+l.
Proof. The worst case is when all other blocks have length t. With obvic

Proof. From the shape of the graph of g(k) (v), it 1is clear that we need meanings for x and y, we have

1 ider th es k=v-2, k=1t, k = t+l, k = t+2.
only consider the cases v-2, , , by = t2+2t+l-a,

For k = v-2, we have

(t+) tx+(t-Dty = (t2+t+l+e)(t2+t+e) .
g(k) = 2v-4 = 2t%42t-242e = t243t+l + (t2-c-342e) . ‘

Then 2tx (t2+t+1+e)(t2+t+e) - (tz—t)(t:2+2t:+l—a)

Now S(k) > t2+3t+lA for t 2 3. The only exception is for t = 23

(5)(7) - 10. t3+(3+29+a)t2 + (242e-a)t + elte .

]

there g




- e
1 x 2 %(t2+3t+2), even for a = e = 0. “

Note added: Paul Erdss has drawn our attention to an interesting question

concerning non-minimality.

Suppose that one has a covering family, not

necessarily minimal, and suppose that this family has more than v blocks.

How close to v can the number of blocks be?

The results of this section

show that the only case needing to be considered is the case k = t+l.

[11
[21]
[3]

[4]

£s1
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THE NON-EXISTENCE OF A (2,4)-FRAME
D.R. Stinson

Abstract

It is shown that a (2,4)-frame does not exist.

1. Introduction.
A (2,4)-frame, 1if it were to exist, would be an eight-by-eight
array F of cells with the following properties:
(1) A cell either is empty or contains an unordered pair of elements
chosen from the set S = {1,2,3,4} x {1,2}.

(2) There are four empty two-by-two blocks Fl,F F_,F

’ »F,, down the
diagonal of F: 2734

(3) a
row or column which meets Fi contains precisely the elements
of s\({1i} x {1,2}).

(4) The unordered pairs occurring in F are precisely those
{(k,m),(2,n)} where k # 2.

For any ordered pair of positive integers

is defined analogously.

(t,u), a

Frames have been of considerable use in the

(t,u)-frame

construction of Howell designs and Room squares (see [1] and [4]). The

following existence results have been shown.

THEOREM 1.1 (Dinitz and Stinson [2])
(1) If u=26, then a (t,u)-frame exists if and only if t(u-1) 1is
even,

(2) If ged(t,210) # 1, thenm a (t,5)-frame exists,
(3) If t is a multiple of four, then a (t,4)-frame exists, whereas

if t is odd, then no (t,4)-frame exists,

ARS COMBINATORIA, Vol. 11 (1981), pp. 99-106.



