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(2% 4224+ 2% +2%*!) and order 22%+2(9%~11 145). Note that for s =0,
this provides two non-trivial sequences of Hadamard matrices.

(ii) Exchange the matrix @ by Iz in ().

Corollary 10.

(i) For each positive integer k, there are orthogonal designs of type
22&+1’22k+1'2u+1'24k+1 X (24t+22k '24k+22k’24k+22b'24k+2k),
(2”*',22"+2“,2"—1—2“,2“"”) and order 2*%(2% +145), 5 = 0,1,2,....

(i) For each positive integer k, there are orthogonal designs of type
(2'221-&1’24“1,24“1 ) (1+24k'1+24k’22k+24k’22l:+24k))
(2’2224_24&,221_*_24&'24“1), (22k+lyl+21k,1+24k,24k+1) and  order
o2k+2(9% 4 145), 8 = 1,2,....

Proof. The proof of this part is now predictable.

Remarks: (i) One can change the sign of any block in each of the
above designs.

(ii) The designs and the Hadamard matrices (from Corollary 9) in
this paper are all new. The closest construction to the above is the
method of construction given in Theorem 4.49 of [l|. These are the
designs of the type mentioned in Theorem 3, but with A, B, C, D being
circulant.

The fact that the block signs could be changed may lead to une-
quivalent designs (and in particular unequivalent Hadamard matrices).

The research is supported by NSERC Grant A7853.

References.

1] AV. Geramita and Jennifer Seberry, Orthogonal designs, quadratic forms and
Hadamard matrices, "Lecture Notes in Pure and Applied Mathematics,” Vol. 45,
Marcel Dekker, New York and Basel, 1979.

12] JM. Goethals and J.J. Seidel, A Skew-Hadamard matriz of order 86, J. Aust.
Math. Soc. 11 (1970), 343-344.

{3 H. Kharaghani, "New class of weighing matrices,” Ars Combinatoria 19 (1985),
69-72.

14 H. Kharaghani, "Some orthogonal designs of order n =0 mod 4,” preprint.

15| H. Kharaghani, "Construction of orthogonal deaigns,” Ars Combinatoria (to appear).

Department of Mathematics
University of Alberta
Edmonton, Alberta

T6G 2G1

1

cl61-G) 70

Association Schemes and Derived PBIB Designs
of Prime Power Order

R.A. Hultquist, G.L. Mullen and H. Niederreiter

ABSTRACT

Using the finite field analog of the Euler function in the
polynomial ring over a finite field, we construct a class of
association schemes of prime power order. Several results are
then given concerning the number of nonisomorphic associa-
tion schemes constructible by our method. For each of our
association schemes, we also indicate how to construct a series
of cyclic PBIB designs.

1. Introduction.

In [1] Agrawal and Nair used the Euler phi function from elementary
number theory to construct an association scheme for each composite
integer v. From the association scheme, several classes of partially bal-
anced incomplete block (PBIB) designs, called reduced residue classes
cyclic PBIB designs, were then constructed.

In the present paper, for v a prime power, we present a generaliza-
tion of the Agrawal and Nair construction. In section 2 we construct :
class of association schemes by using the finite field analog of the Eule:
function in the ring of polynomials over a finite field. We also show thar
for v = p" with p a prime, the results of Agrawal and Nair can b«
obtained as a special case of our construction. Section 3 is devoted t«
obtaining some results concerning the number of nonisomorphic associatior
schemes obtainable from our construction over the field of g elements. I
particular, we show that the number of such nonisomorphic associatio:
schemes with ¢" treatments is closely related to the number of factoriza
tion patterns of polynomials of degree n. Finally in section 4, we follov
the lead of Agrawal and Nair and indicate how to construct a series ¢
cyclic PBIB designs from each of our association schemes.

For general terminology of association schemes and PBIB designs w
refer the reader to Clatworthy [3] and Raghavarao [8].
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2. Construction of Association Schemes.

Let F, denote the finite field of order ¢ = p’ with p a prime and
5§ > 1. Let F,[z] denote the ring of polynomials in one indeterminate z
with coefficients in F, so that the ring Fy[z] has unique factorization.
Moreover, the division and Euclidean algorithms can be used to calculate
the greatest common divisor (a(z),8(z)) of two polynomials
o(z)8(z) € F 2]

The Euler phi function ¢(v) counts the number of positive integers
< v that are relatively prime to v. The function #(v) bas an analog in the
ring F,z]. Let V €F,[z] have degree n 21 and let (V) denote the
number of polynomials in a reduced residue system modulo V, so that
®,(V) counts the number of polynomials over F, that are of degree <n
and relatively prime to V. The function &, is multiplicative, so that if
Vy,Vy € F[z] with (V,V3) =1, then ®,(ViVo) = &,(V))P (Vf) If Vis
irreducible of degree n and ¢ > 1, then & (V¥) = g™ — ¢"¢7V. See [5, p.
122-123] for details.

Let V € F,[z] be a monic polynomial of degree n > 1 and let My
denote the complete residue system modulo V' containing all the ¢" polyno-
mials over F, of degree < n. Suppose that V has the canonical factoriza-
tion V = V‘ll ce V:', where ¢; > 1 and the V; are distinct monic irreduci-

r

ble polynomials of degree v; so that n = S viei. Let Ty =1, Ty,..., T, be
im=l
the monic divisors of V except for V itself, so that the total number of
monic divisors of Vis s + 1 = T (e;+1).
il

For i = 1,..,8 let A; = {o(z) € My|a(z),V(z)) = Ti(z)} and let n;
be the cardinality of the set A;, so that n; = ® (V/T;). Clearly A, is a
reduced residue system modulo V and hence A, is a group of order & (V)
under polynomial multiplication modulo V.

Let ofz)A; = {a(z)B(z) |B(z) € A;} and let [a(z)A;]
= {7(z) € My lh(z) = e(z)B(z) mod V for some f(z) € A;} denote the set
of distinct polynomials obtained when a(xz)A; is considered modulo V. If
oj{z) €A; then [af{z)A] = A; for j = 1,..,s and moreover each polyno-
mial in A; is represented the same number of times, say f;, in the set
aj(z)A, considered modulo V. It follows also that [o)(z)A,;] = A; for every
a(z) €A, :

Definition 2.1. Two polynomials a(z) and 8(z) in My are said to be i-th
associates if o(x) — B(z) € A;.

We note that if a{z) € A; then —a(z) € A;, so the relation is sym-
metric.

Definition 2.2. If o(z) and A(z) are k-th associates, define p¥{a,p) to be
the number of common polynomials among the i-th associates of afz) and
the j-th associates of (z).

Lemma 2.1. If afz) and f(z) are k-th associates and if 8(z) and ~(z)
are k-th associates, then p,-",—(ar,ﬂ) = p,-‘;-(&,q).

Proof. Since A, is indeed a group under polynomial multiplication
modulo V{z), Agrawal and Nair's proof of their Lemma 2.1 can be
extended to our case. We include a proof here only for the sake of com-
pleteness.

Let a(z) + A; = {a(z)+a(z)]a(z) €A,} where all calculations are
performed  modulo  V{z). Suppose  afz) — B(z) = p(z)  and
5(z) — 1(z) = w(z), so that if |S| denotes the cardinality of the set 5
then

ph{ap) = fo(z)+A) N (Blz)+A;j)]-
A simple calculation shows that
ph(aB) = la(z)—B(z)+A) N Al = l(u(=)+A) N Al

and pf(8,7) = lw(z)+A:) 0 A;l
Since fa;(z)A;)=A; for i=1,.,8 i a;(z) € A;, we have
w(z) = p(z)a,(z) for some a,(z) EA;. But since A, is a group we have
al_l(:) EA]; so
[w(z)+A) N Al = Nay(=)r(z)+A4) N Al
' (u(z)+[a (2)A]) N [a7 (2)A]]

((z)+A0) 0 Ay

which completes the proof.

Definition 2.3. Given a set of v treatments, a symmetric relation is an
association scheme with s association classes if

(a) Any two distinct treatments are i-th associates for a unique
i=1,.,;

(b) Each treatment has n; i-th associates, the number n; being indepen-
dent of the treatment;

(c) If two treatments  and B are k-th associates, then the number pki of
treatments which are i-th associates of @ and j-th associates of £ is
independent of a and 8.

The numbers v, n; and p,!‘,-, 1 <i,j,k < s, are the parameters of the
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association scheme. Using polynomials to represent treatments, we have
now proven.

Theorem 2.2. For monic V = V{* .- Vi € Fy[z] of degree n > 1, the
relations defined in Definition 2.1 yield an association scheme with

r

s = M(e;+1) — 1 association classes and paramcters v = q",
J=1

n; = ®(V/T;) for L< i < .
We note that if V is irreducible over F,, then the association scheme

has only one association class, so that in general we assume that V' is a
reducible polynomial over F,.

We now show that if v = p™ with p a prime, the association scheme
of Agrawal and Nair {1] can be obtained as a special case of our construc-
tion. Consider the association scheme induced by V{z) = z" over the field

Fy. Clearly there are s=n association  classes  and
n =@, (z" ") = ikl pn— for i=1,.8. Now if
A; = {ag(z), . . . ,ain(z)} in  the finite field construction, then

B; = {e;(p), - - - ,@in,(P)} is the corresponding set in the Agrawal and

Nair construction, where a;;(p) is calculated modulo v = p". Hence the
two association schemes are indeed equivalent.

These association schemes and the PBIB designs that we will con-
struct in section 4 find application in experimental design. While for such
work the required irreducible polynomials are in general of low degree over
fields of small order, irreducible polynomials over an arbitrary field F, are
easily constructed by calculating minimal polynomials of elements in exten-
sion fields F"g of F, where k > 1 is the degree of the extension. In partic-

ular, if u#OEF{; and s is the smallest positive integer such that

of = a, the elements a,af, . .. ,a" are the distinct conjugates of « rela-
tive to F,. The minimal polynomi?l folz) of a has degree s, is irreducible
—

over F,, and moreover f{z)= I;IO(I —a'i) € F,[z]. For further theoretical

details regarding irreducible polynomials over finite fields, see chapter 2,
section 2, and chapter 3, sections 2 and 3, in [5].

Lists of irreducibles over small fields are available in the literature.
Table C in [5] lists all monic irreducible polynomials of degree n over F,
for n and p as follows: p =2, n <11;p=3,n <7, p=5n <5; and
p=7n<4.

Because of their application in algebraic coding theory, more exten-
sive tables of irreducibles have been constructed in the case p = 2. For
example, Marsh [6] provides an exhaustive list of all irreducibles of degree
n < 19 over F, and Peterson and Weldon [7] list one irreducible over F of
each possible order for all degrees n with 17 < n < 34. Moreover, Table

F of [5] lists one primitive, and hence irreducible, polynomial of each
degree n > 2 over F, for all p < 50 with p” < 10°.

For irreducibles over fields of prime power order p® with 6 > 1,
Beard and West [2] provide an exhaustive list of irreducibles of degree
n > 2 over Fps in each of the following cases: p = 2,8 =2,n <5;p = 2,
§=83n<4p=20=4n<3;andp =3, =2,n<4

3. Enumeration of Association Schemes.

The Agrawal and Nair construction described in [1] yields one associ-
ation scheme for each composite integer v. It will be seen that if v = ¢",
our finite field construction yields a number of nonisomorphic association
schemes each with ¢” treatments, one of which was shown in section 2 to
reduce to the Agrawal and Nair case. In this section we show that if
v = q" with ¢ > n, then the number of nonisomorphic association schemes
constructible with our finite field construction is given by the number of
factorization patterns of polynomials of degree n, which as will be seen, is
greater than the number of unrestricted partitions of n.

A factorization pattern of a polynomial of degree n is a partition of
the form n = bja, + - + b,a, where

by=by= "+ =by <byp=byye= 1 = by, <hp=bie=
Cmb < Kby = b= = by, (3.1)
with k, = r and
ay2ay;> 24y, G202 2 T 28k, Gk
> Gk _ 42 2 2, (32)

where b; is the degree of an irreducible occurring with multiplicity a;.
Hence we will write the factorization pattern above in the form

n=bil4+ o 45 (3.3)

Since in the form (3.3) if i # j we may indeed have b; = bj, we have
called such a partition a factorization pattern to distinguish it from an
unrestricted partition of n where one assumes the b;’s to be distinct when
using the form (3.3).

We consider for illustrative purposes two factorization patterns of 4,
pamely 12+ 2 and 1+ 1+ 2. The factorization pattern 1242
corresponds to one linear factor of multiplicity 2 and one irreducible qua-
dratic while the pattern 1 + 1 + 2 corresponds to two distinct linear fac-
tors each with multiplicity 1 and one irreducible quadratic.
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If ¢ <n it will not be possible to construct an association scheme
with ¢" treatments using our finite field construction for each factorization
pattern of n. For example, if we consider the factorization pattern
n=1+ - 4+ 1 with ¢ <n, then clearly there are only g distinct
monic linear polynomials over F,.

It is possible to write down a criterion in terms of I (t), the number
of monic irreducible polynomials of degree t over F,, which gives a neces-
sary and sufficient condition to determine whether from a given factoriza-
tion pattern of n, it is possible to construct a polynomial V(z) of degree n
inducing an association scheme with ¢” treatments. It is well known, see
[5, p. 93], that

mn=%§ﬂﬂ¢~ )

where p(d) is the Mébius function from elementary number theory. Con-
sider the factorization pattern of n given by (3.1) and (3.2). Then a poly-
nomial V = B:‘ - -B:' of degree n with B; irreducible of degree b; over
F, inducing an association scheme with g” treatments can be constructed

if and only if Io(by) 2> k; — ki for 1 <i <, where kg = 0.

If [] denotes the greatest integer function and if ¢ > n, it is easy to
check that I (t) > [n/t]. Given any factorization pattern of n, no more
than [n /t} irreducibles of degree ¢ will be needed to construct a polynomial
V(z) of degree n over F, with the property that the factorization pattern
of V(z) is the given factorization pattern. :

The following theorem shows that if V; and V, induce association
schemes with ¢" treatments and V; and V, have distinct factorization pat-
terns, then V, and V, induce association schemes which have different
parameter sets, so that in particular, they are nonisomorphic. To be more
precise, let V = B}' - - - B;" € F,{z] with B; € F,[z] a monic irreducible of
degree b; and a; > 1 for j=1,..r, where the b;’s and a;’s sat‘i‘sfy (3.1)

and (3.2). Let T),..,T; be the monic divisors of V so that t = II{a;+1).
jml

Here we are considering all divisors of V, even though in the construction
of our association schemes in section 2 we considered only divisors T # V.
We also note that as T; runs through the divisors of V so does V/T;.
Hence if £; = ®,(T;) for i = 1,..,t and n; = & (V/T;) for i = 1,...,8 as
defined in section 2, then the multiset {£,, . .. ,¢,} is equal to the multiset

{1ny,..n,}.
Fg(x; i=1,.4t £, can be written uniquely in the form
¢, = ¢""IR(e;) with E(£;) >0 and ged(g,R(£;) = 1. We note that if

=
]

i =B - B’ with0<e; <a;forl<j<r,then

e R st

E(t;) = S max(0,e;~1)b;, R(¢;)= nl(q'j—l).
i=1 5
>

Consider the multiset S = {¢,,...,¢;}, ie. consider the set of values
attained by the £;, together with the multiplicity with which each value is
attained.

Theorem 8.1. The multiset S = {¢,,...,t,} determines the tuple

(b1,-0sbr 1815008, uniquely.

Proof. The proof proceeds in two steps. In the first step the b; are
determined and in the second the a;.

Step 1.

Consider those £; with E(£;) = 0. There are exactly 2" of those,
corresponding to the r-tuples (ey,...e,) with 0 <e; <1 for 1 <js<r.
Thus r is determined. Delete the value £; = 1 corresponding to T; = L.
Among the remaining 2" — 1 values £; the s‘ma]]est one is ¢ ' — 1, thus b;
is determined, and the second smallest is ¢ * — 1, thus b, is determined.
From the 2" — 1 values £; above delete the values ¢'—1, ¢ °—1,
(z{ '_1)(q >~1). Among the remaining 2" — 4 values ¢; the smallest one is
g ®— 1, thus b, is determined. From these 2" — 4 values £; delete the
values ¢ -1, (¢"-1)(d"-1), (¢*-1a"-1), (@"-1)g" -1 -1).
Among the remaining 2" — 8 values ¢; the smallest one is ¢ *— 1, thus &,
is determined. Continuing in this way, the values of b,,...,.b, are deter-
mined. Since @ ,(T) does not depend on the specific form of the B;, but
only on the degrees of the B;, we may choose arbitrary monic irreducible
B; € F,[z] with the degree of B; equal to b; for 1 < j <.

Step 2.

Consider those £; with
R(¢;) = q"l — 1. The corresponding E(£;) are exactly all values (e;—1)b;
with 1 < e; < aj, 1 < j <k For these £; write E(¢;)=1+ E(€».
Since a; > ap,> - 2> k) the largest value of E\(¢;) is a;, thus a, is
determined. If the largest value of E,(£;) occurs with multiplicity m,, this
means that a, is repeated m; times, ie. a;=a8g= """ = dpm . If
m, = k,, then we are done. If m, <k, let d; be the largest positive
integer such that d, is attained more than m, times by E\(£;), say it is
attained m, > m, times. Then O 41 = Om 42 = T = Ay, = d,. If
mq = k;, then we are done. If my <k, let d, be the largest positive

Case ¢ > 2. We first determine a,,a,...,a;
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integer such that d, is attained more than m, times by E(¢;), say it is
attained mg > m, times. Then Ongtl = Gmgp2 = 17 = Gy = d,. Con-
tinuing in this way, the values of ay,ay,...,ay, are determined.

If k,=r, then we are done. Otherwise delete from S the
{ar+1)...(ay +1) values & ,(T) with

bl .
T|O B, .
=l

Among the remaining £; consider those with R(¢;) = q."2 — 1. The
corresponding E(£;) are exactly all values (e:,»—l)b,,2 with 1 <e; < aj,
ki+1 < 5 < kg For these €; write Ey(¢;) =1 + E(l,-)bl.;l. By consider-
ing the values of Eo(£;), we can determine Qg 11Ok, by the same method

as before. If ko = r, then we are done. Otherwise, delete from S the
(a+1)...(ag+1) values $,(T) with

k2 ..
T|0 B},
Jeal

)
Among the remaining £; consider those with R(¢;) = ¢ Bl Continuing
in this way, the values of ay,...,a, are determined.

Case ¢ = 2.‘_ The method for the case ¢ > 2 does not work here since we
can have g’ —1=1. If b, > 2, this does not occur, and so we can
proceed as above. Now let b; =1, hence by =by= --- =b, =1. Con-

sider those €; with R(£;) = 1. The corresponding E(€;) are exactly all
values

max(0,e,—1) + - + max(0,e, ~1), 0<e; <a;, 1< <k
For any h > 0 we can therefore determine the number N(h) of solutions
of
max(0,e,—1) + - - + ma.x(O,e,,l—l) =h

with 0 <e;<a;, 1 <j<k;. Now we have in the ring of polynomials
with integer coefficients

o0 ‘l a; max(0.e — ‘l a-_
Gz) = LN(R)H = M(3 ™09 = mu+ 2=
B0 J=1 e;=0 jm=1 z—1
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: nh %
_ 2#(151511|-, 1} .“l(l+ z’-1
ju=

z—1 )
a,-)l
Thus the leading coefficient of G(z) is gt ,  where
m =k, — #{1<j<k la;=1}, and so m is determined. Since
ay>ap2> 0 2ag, this means that a; =1 for m + 1 <7<k I

m = 0, then ay,...,a; are determined. Otherwise consider -

z—1

z—1

m—k
mg2 1 m mo L

F\(z) = (z-1) G(z) = M (z-1)(1+ )= O(z7+z-2),

j= i=
where we have a; > a;> '+ >a, > 1. After expanding the last pro-
duct, the largest exponent is a; + - * + a,, (with corresponding coeffi-
cient 1) and the second largest exponent is a; + *** + dp_y + 1 (with
corresponding coefficient being positive). The difference between these
exponents is a,, — 1, thus a,, is determined by F|(z). Now form

Fi(z m—l .
Fyz) = —4;()— = I (z%4+z-2)

z "pz-2 !
and apply the same procedure to it, thus determining a,,_;. Continue in
this way until F,,(z) = z°' + z — 2 determines a,. Altogether, we have
determined 1,89,k -

If k,=r, then we are done. Otherwise delete from S the
(a1+1)...(ax +1) values & T) with

B
T|I By
=1

b
Among the remaining £; consider those with R(£;)=2 *—1. The
corresponding divisors T are of the form

‘l
T = UB® with U|T1 By

=1
and 1 <e, < a, for some k; + 1 < w < ky. The corresponding E(¢;) are
exactly all values

max(0,e,—1) + - + max(0,e; ~1) + (ex—1)bs,

with 0<e;<a; for 1<5<k and 1<e, <a, for some
k; + 1 < w < ky. Let M(h) be the multiplicity of & > 0 in this system of

values E(¢;), let N(h) be as above, and let L(h) be the number of solu-
tions of (e,—1)b,, =h with 1<e, <a, for some ky + 1< w <k,
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Then in the ring of polynomials with integer coefficients
o0 o0 o0 09
H(z) = Y M(h)z* = (3 N(h)z*)( 3 L(h)z*) = G(z) 3 L(h)=*,
h=0 h=0 A=0 =

where S(:x) is as above. Now H(z) and G(z) are known, thus the polyno-

mial 3] L(h)z* is determined. In other words, we know exactly which
A0

values are attained by (c,,—l)b,,e, 1<e, <a,, k; + 1 < w < k,, and with
which multiplicity each value is attained. Therefore the method in the
case ¢ > 2 can be applied and determines all a,, for k; + 1 < w < ks,

If ky=r, then we are done. Otherwise delete from S the
(a1+1)...(ay,+1) values doT) with

ky
T|I By
Je=1

. . . U
Among the remaining £; consider those with R(£;) =2 B The
corresponding divisors T are of the form

€ kl
T = UB,” with U|Tl B}/
J=1

and 1 < ¢, < a, for some k; + 1 < w < k;. The corresponding E(¢;) are
exactly all values

max(0,e,—1) + - - + max(0,e, —1) + (ey—1)bs,

with 0<e;<a; for 1< j7<k; and 1<e,<a, for some
kog+ 1 < w < ks. Thus we can proceed as above to determine a, for
k.{ +dl < w < k3. Continuing in this way, the values of a,,...,a, are deter-
mined.

Let F,(n) represent the number of factorization patterns of n of the
form (3.1) and (3.2) with the property that there exists a monic polynomial
V of degree n over F, such that V factors over F, into one of the F,(n)
fac!,orization patterns. For example if n = 4, there are 11 distinct fact:ori-
z:tlon patterns of 4 given by 1414141, 124141, 12412 1341, 1%, 14142
1%+2, 1438, 242, 2%, and 4. Hence Fy{4) = 8 since by (3.4) there are n(;
monic polynomials of degree 4 over F, which have the factorization pat-
ter>ns41+l+l+l, 124141, or 2+2. Similarly Fy(4) = 10 and F,(4) = 11 if
qg>4.
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Corollary 8.2. For each prime power q and each n > 1 there are Fy(n)
nonisomorphic association schemes with q" treatments constructible by
the method of section 2.

As factorization patterns of the form (3.1) and (3.2) now have com-
binatorial significance, a study of such patterns would indeed be of
interest. For the moment however, we prove only the following theorem
which provides a generating function that allows the computation of Fy(n)
for any prime power g and n > L.

Theorem 3.3. The generating function for F,(n) is given by
14+ Y F(n)" =1 (l—z“)—B’(")

(3.5)
n=l

where By(n) is the number of positive divisors d of n with d < I(n/d)

and I,(n/d) is defined in (5.4).

Proof. We first show that if p(m,n) denotes the number of ordinary par-
titions of n into at most m parts, then

F((") = EP(]q(b1)!01)'--p(!q(br):ar) (36)

where the sum is over all ordinary partitions b:‘ + 0+ b:' of n. Itis
clear from the discussion in the middle of page 6 that each part b;-j of an
ordinary partition can be decomposed over Fy into exactly p(I,(b;),a;) dis-
tinct factorization patterns of b;". Hence each ordinary partition
bl 4+ o+ b of n can be decomposed over F, into exactly
p{I,(b1).ay)...p(L,(b,)a,) distinct factorization patterns of n from which
(3.6) follows. Hence if we set p(m n)=1if n =0, we get

1+ §F,(n)z" =1+ f S p([,(bl),a1)...p(l'(b,],a,)]z"

n=1 1], .,
i TS

1+ [ P p(’.(l),f'n)P(Iq(2),"2)p(Iv(3):"a)---]z"

n+2n 0430 g+ =

nm]

jli;l [zzp (Iq(j):" )zj" ] ¢

o0
Since l'I(l—z")'l is the generating function for the ordinary partition
LT

function, for any m > 1 we have
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Y p(m,n)e" = M(1-2')"L
n=g L]
Applying this with m = I,(5) and substituting z7 for z, we get 6)6 7

L) 5
Ep(f Gim)e = Tu (1-s. oY

GO

Therefore

oo ’,(J‘)

I (1) = n(1 —zm) ),

1+ EF (n)2" =

ne=] ”/ ’
where By(n) is the number of ordered pairs (i,7) of integers with ij = n
and 1 <1 < I;(5). Hence B,(n) is the number of positive divisors d of n
with d < I,(n /d) which completes the proof.

Let F(n) denote the total number of factorization patterns of n of

the form (3.1) and (3.2). As indicated in the middle of page 6, if ¢ > n
then [i(t) > [n/t] so that the condition d < I,(n/d) is satisfied for all
positive divisors d of n. Thus for ¢ > n we have B(n) = d(n), the
number of positive divisors of n. We also have F,(n) = F(n) for ¢ > n.
Hence we may state -

Corollary 8.4. The gencrating function for F(n) is given by

1+ EF(n)z = H(l-z")_“("

n—l

where d(n) is the number of positive divisors of n.

For the sake of completeness, we list in Table 1 some values of Fy(n)
for small ¢ and n. In Table 2 we also list some values of F(n).
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Table 1
Fc(")
.\- 1 2 8 4 13 8 T ° 10 11 12 13 14 15 18 17 18 19 0
1 8 4 38 11 20 27 4 61 % 128 198 257 8T4 a7 08 w7 1287 1083 207
1 8 5 10 16 20 4@ 72 107 170 248 383 542 810 1145 1o 2311 S$306 4537 8303
1 8 & 11 16 2 41 B4 124 200 200 481 087 1068 1500 22685 3163 4038 o444 9258
1 3 5 11 17 88 50 & 135 223 32 531 778 1194 1730 2501 3700 5429 7000 11035
1 8 6 11 17T 3 & @ 149 230 30 82 881 1338 1963 2008 4288 G354 2000 18182
1 8 5 11 17 34 8 ™ 1M 22 3305 53 BT8 1572 2015 3002 4432 6580 o434 13775
1 8 6 11 17 3 B2 94 145 243 308 58 830 1380 2049 8114 4528 6741 0677 14148
n 1 8 &5 11 17 M & ™ 145 2¢44 370 602 897 1406 2077 3166 4012 OES7 0916 14532
18 1 8 85 11 17 8 5 © 145 244 370 008 B8N 1400 2085 8181 4040 OG%B 10002 14078
18 1 38 & 11 17 84 52 of 145 244 370 008 80 1410 2087 3186 4049 067 10085 14740
17 1 8 &5 1 17 84 5 94 145 244 30 003 O 1410 2087 3188 4650 OO0GE 10038 14745
19 1 38 5 11 17 34 &2 o 145 244 30 008 80O 1410 2087 3188 4050 0060 10040 14749
Q@ ’ ] l Table 2
n  F(n) n  F(n) n F(n)
1 1 11 370 21 21077
2 3 12 603 22 30479
3 5 13 899 23 43120
4 11 14 1410 24 61574
5 17 15 2087 25 86308
8 34 16 3186 26 121785
7 52 17 4850 27 169336
8 94 18 6959 28 236475
9 145 19 10040 29 326201
10 244 20 14750 30

451402

If v = ¢, for some factorization patterns of n one can construct an
association scheme with a particular set of n;’s in several different ways.
In particular, consider the factorization pattern n = b, 4+ b, >
where a positive integer m > 1 divides each b;, so that b; = md; for
j=1,.,. Let V= By - B." where B; is monic irreducible of degree
b; over F,. Then we obtain an association scheme where if T; # V is a
monic divisor of V, then n; = & ,(V/T;).

A second approach to constructing an association scheme with the
same set of n;’s, is to consider polynomials over the extension field F,m.
Here we use the well-known result that an irreducible polynomial of degree
m¢ over F, factors over F,... into m irreducible polynomials each of degree
¢, see [5, Theorem 3.48]. Hence for j = 1,...r the irreducible B; of degree
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b; = md; over F, factors over F n into m irreducible factors each of
degree d;. For 7 = 1,...r choose D, to be a monic irreducible factor of B;
of degrée d; over Fim. Let V) = Dy - -- D" over Fym, and if Ti# V,is a
monic divisor of V; then n/= & 'm(Vlﬂ:), so that upon reordering,
n/ = n; for all i. Hence both methods induce association schemes with the
same set of n;’s. While the association schemes constructed by these
methods may be isomorphic, there may, however, be computational advan-
tages in using one method over the other.

The most important advantage of working in extension fields is, how-
ever, that for some cases where we can not construct an association
scheme with ¢" treatments over F, because of an insufficient number of
irreducible polynomials over F, of particular degrees, it may be possible,
by using the extension field method, to indeed construct such schemes with
¢ treatments. We now consider several examples of such situations.

Let v = 2* and consider the factorization pattern 4 = 2 + 2. By
{(3.4) there is only one irreducible quadratic over F, that being
2?2+ 2 + 1. Hence over F, it is not possible to construct a polynomial
V(z) of degree 4 with factorization pattern 2 + 2. Over the field Fip let
V(z) = z(z+1), so that V(z) induces an association scheme with s = 3
association classes and moreover, n; = 9 and n, = ny = 3. Other exam-
ples that do not exist over F, but that do exist over Fj2 are easily con-
structed. In the case v =2° consider the factorization pattern
8=2+2+2 and let Vy(z)= z(z+1)(z+0) over F where a0,
1 €Fp and for the factorization pattern 8 = 22 4 2 let Vi(z) = ¥z +1)
over Fyp, so that Vi(z) and Vy(z) both induce association schemes. Of
course similar examples could also be given for cases where ¢ > 2.

4. Construction of Cyclic PBIB Designs.

For each association scheme constructed by the method of section 2,
we now explain how to construct a series of cyclic PBIB designs. We begin
with

Definition 4.1. A PBIB design, based on an association scheme with s
association classes, is a collection of v treatments arranged in b blocks so
that:

(a) Each block contains k distinct treatments;

(b) Each treatment is contained in r blocks;

(c) If two treatments a and B are j-th associates for some 7=1,.48,

then they occur together in X; blocks, the number X being indepen-
dent of the particular pair of j-th associates @ and 8.

B )

The numbers v,r,b,k and X; (1 < j < 8) are known as design param-
eters.

In the first of two methods, blocks are cyclically developed from a
single initial block B taken to be one of the sets A; where

A; = {o(z) € My[(a(z)V(2)) = Ti(z)} (i = L,..6) (¢1)

Specifically, we build a collection of b = g" blocks by constructing the
blocks B(z) + A; = {B(z)+a;(z)la;(z) € A;}, where B(z) runs through the
¢" polynomials of the complete residue system My.

If V(z) is irreducible over F), then the association scheme described
in section 2 has exactly one association class and the design developed
from A, is then a balanced incomplete block (BIB) design. If V(z) is redu-
cible over F,, then the resulting design will be a PBIB design.

Theorem 4.1. Let V(z) be a monic polynomial of degree n > 1 over F.
Let A; = {oz) € My|(a(z),V(z)) = Ti(z)} for i = 1,.,s. Consider the
association scheme defined in section 2 with scheme parameters v = q",
n; = ®,(V/T;) for i = 1,..,s and pl; with 1 <i,jk <s. Let B = A; for
some particular i. The design whose blocks are f(z) + B, B(z) € My,
obtained by cyclic development of B is a PBIB design with parameters
b=v=¢q",r=k=n;and ;= pl for 7 =1,..8.

Remark. While the ); are functions of 1 as well as j, for simplicity of
notation we omit writing the i since we are working with a fixed A;.
Proof. By construction b = v = ¢" and r = k = n;. This leaves us with
the problem of showing that A; = L for j=1,..,8.

By definition, X\; denotes the number of times two j-th associates
appear together in blocks of the design developed from A;. Let afz) and
B(z) be j-th associates. Now because of the cyclic development of the
design starting with A;, \; is also the number of times the difference
oa(z) — B(z) appears among the n;(n;—1) differences arising from the set
A

By definition, pj; is the number of i-th associates of a{z) which are
also i-th associates of S(z). Suppose pf; = ¢ and suppose the ¢ common
i-th associates are r,(z) for h = l,.,c. Then a(z) —7,(z) €A; and
B(z) — 4(z) € A;. Hence oz) — B(z) is then a difference arising from A
and it arises for each b = 1,...c. But a(z) — f(z) € A; and hence for each
of the n;(n;—1) differences arising from A;, every element of A; occurs p};
times. Therefore X ; = pi; which completes the proof.

79




Remark. Since we cannot cyclically develop a design from A; if
JA; 1= n; = 1, we must eliminate such A; as potential initial blocks. If
g =2, let 8 denote the number of distinct linear factors in V{z). Then
s — 0 — 6y is the number of sets A; with |4;|> 1, where &4 is the
Kronecker delta symbol. If ¢ > 2, then there are no A4; with |4;| = 1.

This procedure for creating PBIB designs is not restricted to
developing on only one of the sets A;. The following corollaries, whose
proofs we omit, provide the basis for creating many other designs.

Corollary 4.2. The design consisting of the blocks B(z) + B,
B(z) € My, obtained by cyclic development of a set B = {0} U A; 18 a
PBIB design with parameters v =56 =¢q",r =k =n; + 1 and

(dg - Xe - N) = (pdpd - ph+2 ... ph)-

Corollary 4.3. The design consisting of the blocks p(z)+ B,
B(z) € My, obtained by cyclic development of a set B = A; U Aj, i # 7,
is a PBIB design with parameters v=>5b=gq", r =k = n; + n; and
A\ o=ph + p?j + 2p,-",- for h =1,.,8.

The procedures of Corollaries 4.2 and 4.3 can be combined in order
to state

Corollary 4.4. The design consisting of the blocks f(z)+ B,
B(z) € My, obtained by cyclic development of a set B = {0} U 4; U A;
for i#j s a PBIB design with parameters v=15=4q",
r=k=n; +n;+1and

k,.=p;";+p},o+2p!‘,- h#1i,hs#j
N = (phi+2) + pj; + 2pl;
;= pfi + (pi+2) + 2p;.

We also note that although one cannot develop a design from a set
A; where n; = 1, such a set A; can be used in conjunction with {0} or with
another set A; to develop a design.

The second method of constructing cyclic PBIB designs is based
upon a procedure of Das and Kulshreshtha {4|. Let V be a monic polyno-
mial of degree n > 1 over F, with g odd, so that n; = & (V) is even. Let
E be a subset of A, of cardinality n,/”2 with the property that
Ay =EU (-E). If t =n/2, let vt blocks, each of cardinality k, be con-
structed by cyclic development of ¢ initial blocks Bj,....B;. The initial
blocks are generated from a basic initial block By = {8(z), . . . ,Ai(z)}
and a set £ = {¢(z), . . .,¢(z)}, where the §;(z) are k distinct elements
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from M, and the ¢(z) are distinct nonzero elements of My. For
7 =1,.,t let

e ej(z) By = {‘j(:’)ﬂl(:‘)r L !Ej(x)ﬂb(x)}:

where all products are calculated modulo V{(z). We now prove

Theorem 4.5. Let V be a monic polynomial of degree n > 1 over Fy
with q odd and consider the association scheme with parameters v = q",
n; for ¢ =1,.,8 and p;-,. with 1 <i,j,h <8 constructed in section 2.
For i = 1,..,8 let r; denote the number of differences arising from By
which belong to the set A; given in (4.1). The design constructed by cycli-
cally developing the sets By,..B, is a PBIB design with parameters
v=g"b=nuvR k, r=nk/2 and )\ = riny/A2n;).

Proof. There are r; differences 8(z) — a(z) € A; that arise also in By.
Each of the ¢ initial blocks has the same number of differences contained
in By. In developing blocks, each block will have the same number of
differences in A; since the same element is added to each element of By,
ie., if B(z) — a(z) € A; then (B(z)+5(z)) — (a(z)+6(z)) € A; for all §(x).
Therefore there are vr;t differences among all blocks which are in A;.

On the other hand there are v choices for a(z), n; choices for 8(z),
and since in the i-th class each ordered pair occurs \; times, we have
vn;)\; differences among all blocks which are in A;. Thus vrjt = va;X;
and \; = r;t/n; = r;ny/2n;).
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Ballot Sequences and Restricted Permutations
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1. Introduction
The distibution of the length of the longest ding subseq of ap jon of

(L2 '--.n].x=(u¢.xl.....:.-.).hubeenmnchsmdbd(e;, [1.3D. An ascending subsequence is
<i,.mdd\elmg|hofmessbseq|misk. The principal

:,-‘<x,-_<~--<:,~.,vb=ei‘<i,<---
rsultinI.hismisd\uﬂnapeacdlamhofﬂ\:lmgmmbqwi:‘N:.cvu'allpamumims[l).
Amd\erinui;uingmullmﬂnenmbu,p(n.l).of, jons with no ding subseq of

length greater than L Let the set of all such permutations be P (1, 1) 1t is kmown [2] that

. h]
pn.D) R+l [u

which is a Catalan number. Of course p(a, 1)=1. Theappanmeofdu(‘auhnnumbermellsanaso-
ciadonwimapulnwnbaofahawdlhmmbin-a'ulrmblansinvhiduuie(:mhnnmnbas

b their Rogers [2]

play a role. Oﬂmﬂmpobbmlmldlledbyaplid! i
suldlhau“dimctpmol’mldbewdcaneuilmimmmuha’vmdnhﬂnﬁns"p(u.n.ﬂ
related quantities. In this pote we give a direct proof. In the sequel if we refer 10 8 permutation we assume
itis in P (n, 2), unless otherwisc specified.

Of all the il ‘byﬂnCnhnnmbu:puhq:sd\eamhlwtpkis

ial objects

the set of ballot sequences B (1) (c-.g.. [4])- Ahlloueq\ml=(B..B|.--~.B,._|)h|seqnmoh
2

0’s end a 1°s such that, left 1o right, the l‘lnwmmhuﬁbyhO'gMuEl;ZfllZ].

Many techniques are known lumﬁngaMMn;thm(q,.[SD.ﬂ.p‘mubi}paim

belweenB(n)uldP(n.Z).Qm:povidelnymnnklmmupamuuﬁmsdﬂu.z). We now

exhibit such a bijection.

2. Mapping B (x) into P (x, 2)

Cuﬁdalpumuuﬁm:&un?(-.!)u\dnppmmuq-l. It is clear that
'm>lm>"'>I._x.lnp-t'x:uhrifl,-znnd[>lm1-n—l,ﬂl<lmmimmﬁn
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