[go: up one dir, main page]

login
A006149
Number of 3-tuples (p_1, p_2, p_3) of Dyck paths of semilength n, such that each p_i is never below p_{i-1}.
(Formerly M3634)
8
1, 1, 4, 30, 330, 4719, 81796, 1643356, 37119160, 922268360, 24801924512, 713055329720, 21706243125300, 694280570551875, 23188541161342500, 804601696647424500, 28880966163870711000, 1068595748063216307000, 40631980618055892780000, 1583603339463794983230000
OFFSET
0,3
COMMENTS
a(n) is the determinant of the 3 X 3 Hankel matrix [a_0, a_1, a_2 ; a_1, a_2, a_3 ; a_2, a_3, a_4] with a_j=A000108(n+j). - Philippe Deléham, Apr 12 2007
Third subdiagonal in A123352, equivalent to the 6th subdiagonal in A185249, its "aerated" version with additional subdiagonals entirely filled with zeros. - R. J. Mathar, Feb 18 2011
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 183).
M. de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique. Ph.D Dissertation, Université Bordeaux I, 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Myriam de Sainte-Catherine, Couplages et Pfaffiens en Combinatoire, Physique et Informatique, PhD Dissertation, Université Bordeaux I, 1983. (Annotated scanned copy of pages III.42-III.45)
FORMULA
G.f.: Hypergeometric 4_F_3 ( [ 1, 1/2, 5/2, 3/2 ]; [ 4, 5, 6 ]; 64 x ).
a(n) = Det[Table[binomial[i+2, j-i+3], {i, 1, n}, {j, 1, n}]]. - David Callan, Jul 20 2005
a(n) = 720 (2*n)! (2*n+2)! (2*n+4)! / (n! (n+1)! (n+2)! (n+3)! (n+4)! (n+5)!). - Steven Finch, Mar 30 2008
(n+5)*(n+4)*(n+3)*a(n) -8*(2*n+3)*(2*n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Feb 27 2018
From Peter Bala, Feb 22 2023: (Start)
a(n) = Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j).
a(n) = (1/2^(n-1)) * Product_{1 <= i <= j <= n-1} (i + j + 6)/(i + j - 1) for n >= 1. (End)
a(n) ~ 45 * 2^(6*n + 10) / (Pi^(3/2) * n^(21/2)). - Vaclav Kotesovec, Feb 23 2023
MAPLE
seq(6!*(2*n)!*(2*n+2)!*(2*n+4)!/mul((n+j)!, j=0..5), n=0..20); # G. C. Greubel, Aug 28 2019
MATHEMATICA
Table[6!*(2*n)!*(2*n+2)!*(2*n+4)!/Product[(n+j)!, {j, 0, 5}], {n, 0, 20}] (* G. C. Greubel, Aug 28 2019 *)
PROG
(PARI) vector(20, n, 6!*(2*n-2)!*(2*n)!*(2*n+2)!/prod(j=0, 5, (n+j-1)!) ) \\ G. C. Greubel, Aug 28 2019
(Magma) F:=Factorial; [F(6)*F(2*n)*F(2*n+2)*F(2*n+4)/&*[F(n+j): j in [0..5]] : n in [0..20]]; // G. C. Greubel, Aug 28 2019
(Sage) f=factorial; [f(6)*f(2*n)*f(2*n+2)*f(2*n+4)/product(f(n+j) for j in (0..5)) for n in (0..20)] # G. C. Greubel, Aug 28 2019
(GAP) F:=Factorial;; List([0..20], n-> F(6)*F(2*n)*F(2*n+2)*F(2*n+4) /Product([0..5], j-> F(n+j) ) ); # G. C. Greubel, Aug 28 2019
CROSSREFS
Column k=3 of A078920.
Diagonal of A123352 and of A185249.
Sequence in context: A128329 A211828 A277759 * A207833 A121413 A001761
KEYWORD
nonn,easy
EXTENSIONS
Name clarified by Alois P. Heinz, Feb 24 2023
STATUS
approved