Hindin, 2 pages Scan add to A 46090 A 11900 A 1653 A 6062 A 29549 A 75528

Figure 3.

Thus,

$$\frac{y}{x} = \frac{3\left(\frac{z}{x}\right) - \left(\frac{z}{x}\right)^3}{1 - 3\left(\frac{z}{x}\right)^2} \tag{2}$$

Since $m \perp MPD = m \perp CBD$,

$$\tan \phi = \frac{\frac{y}{2} - z}{\frac{y\sqrt{3}}{2}} = \frac{z}{x} \tag{3}$$

Upon solving for z and substituting in equation (3), we have

$$\tan \phi = \frac{y\sqrt{3}}{3y + 2x\sqrt{3}} \tag{4}$$

Thus, we wish to determine whether or not the equation below is an identity.

$$\frac{y}{x} = \frac{\frac{3y\sqrt{3}}{3y + 2x\sqrt{3}} - \left(\frac{y\sqrt{3}}{3y + 2x\sqrt{3}}\right)^3}{1 - 3\left(\frac{y\sqrt{3}}{3y + 2x\sqrt{3}}\right)^2}$$
(5)

JAM

16 1983/84

TARS D HEXES / 191

(6)

This simplifies to:

$$\frac{y}{x} = \frac{y(2y^2 + 3\sqrt{3}xy + 3x^2)}{x(2x^2 + 3\sqrt{3}xy + 3y^2)}$$

Therefore, we conclude that \overline{PB} trisects $\angle B$ only when x = y ($\overline{AC} = \overline{BC}$); that is, our conjecture holds true only for isosceles right triangles!

Note that the value of the expression $\frac{2y^2 + 3\sqrt{3}xy + 3x^2}{2x^2 + 3\sqrt{3}xy + 3y^2}$ ranges from $\frac{2}{3}$ to

 $\frac{3}{2}$ as the ratio of y to x ranges from 0 to ∞ . In retrospect, it is clear that if \overline{BC} is held fixed and \overline{AC} approaches 0, then \overline{PB} "almost" bisects segment \overline{AC} and $\frac{m\angle PBC}{m\angle ABC}$ approaches $\frac{1}{2}$.

STARS, HEXES, TRIANGULAR NUMBERS, AND PYTHAGOREAN TRIPLES

HARVEY J. HINDIN

5 Kinsella Street Dix Hills, New York 11746

Figurate numbers such as the Star numbers, $S_n = 6n(n-1) + 1$, and the Hex numbers, $H_m = 3m(m-1) + 1$, have been defined [1]. A table of the first 15,000 Stars and Hexes has been calculated [2] and certain of their properties will be discussed in a forthcoming book [3].

In this article, we answer the question of when $S_n = H_m$. This problem is equivalent to the problem of determining when one triangular number, $T_k = k(k+1)/2$ is twice another. It is also equivalent to determining the Pythagorean triples x, y, z such that y = x + 1. A table of solutions is given in this article.

If $H_m = S_n$ then m(m-1)/2 = n(n-1). Thus, $H_m = S_n$ is equivalent to $T_{m-1} = 2T_{n-1}$, where $T_m = m(m+1)/2$ is a triangular number. Clearly, for m = 4, $T_3 = 6$ and for n = 3, $T_2 = 3$, so $T_3 = 2T_2$. Therefore, $H_4 = S_3 = 37$. Also, $H_1 = S_1 = 1$. The problem is to find other solutions.

If m(m-1)/2 = n(n-1), then $m^2 - m = 2n^2 - 2n$ and $n = (1 + \sqrt{2m^2 - 2m + 1})/2$. In order for n to be a positive integer, we need $2m^2 - 2m + 1$ to be the square of an odd integer, say z^2 . So, we need $(m-1)^2 + m^2 = z^2$. But $(m-1)^2 + m^2 = z^2$ is precisely the Pythagorean theorem wherein one side of the triangle is one unit longer than the shorter side. This problem has been solved [4].

State 1. Stars and Hexes	70-1	0	ಣ	105	0 10	0/68	121278	4119885	139954815	4754343828		161507735340	5486508657735	186379786627653	A ZCC30	H<154 1 1 1 2 2 8 8	
	T _{m-1}	0	9	010	710	7140	242556	8239770	279909630		9508687858	323015470680	10973017315470	372759573255306	4007.0		7
	$H_m = S_n$		37		1261	42841	1455337	49438621	10773704	10//646/01	57052125937	1938092824081	65838103892821	2236557439531837		1000	一件ののでん
	Z				59	169	985	5741		33461	195025	1136689	6625109				A 1053
	>		_ (m	15	85	493	2871	107	16731	97513	568345	3312555	19306983	11900	200	4
Ser le	N N		-	4	21	120	697		4000	23661	137904	803761	7684660	27304197	A11900	100/	2/2
1	a		1	-	2	ო	, 4	r l	ഹ	9	7	α	o c	10		7	1

It is shown in reference [4] that a solution is given by $m-1=2q_pq_{p+1}$ for p even and $m=2q_pq_{p+1}$ for p odd where $q=((1+\sqrt{2})^p-(1-\sqrt{2})^p)/2\sqrt{2}$ and $p=1,2,3,\ldots$, a dummy variable. For example, for $p=1,q_1=1,q_2=2,$ m=4. In this case, n=3 and $T_3=2T_2$ (as above), and $H_4=S_3$ (as above). For $p=2,q_2=2,q_3=5, m=21, n=15, T_{20}=2T_{14}$, and $H_{21}=S_{15}$. Rather than perform the calculations for n, it can be shown that $n=(1+q_{2p+1})/2$ for all p. It can also be shown that $q_p=2q_{p+1}+q_{p+2}$ which sequence defines the Bell numbers. For further details see reference [4].

The numbers in Table 1 show the first ten Star and Hex numbers which satisfy $H_m = S_n$. They also show the corresponding solutions to $T_{m-1} = 2T_{n-1}$ and the hypotenuse z of the corresponding Pythagorean triangles where, as seen in the text, m is the longer side (by unity). The table can be examined for congruence and other relationships according to the whim of the reader.

REFERENCES

- 1. M. Gardner, Scientific American, 231:1, p. 116, July 1974.
- 2. H. J. Hindin, unpublished, but available from the author.
- 3. M. Gardner, private communication, November 1, 1978.
- 4. T. W. Forget and T. A. Larkin, Pythagorean Triads of the Form x, x + 1, z Described by Recurrence Sequences, Fibonacci Quarterly, 6:3, pp. 94-104, June 1968 (a typographical error on page 102 is corrected in Table 1 of this article).

PANDIAGONAL PRIME MAGIC SQUARES OF ORDER 4

ALLAN WILLIAM JOHNSON, JR.

524 S. Court House Road, #301 Arlington, Virginia 22204

All pandiagonal fourth-order magic squares can be written in the form

F + y	G + x	G - x	F - y
G - w	F + z	F - z	G + w
F + x	G + y	G - y	F - x
G + z	F - w	F + w	G - z