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NUMBER OF ODD BINOMIAL COEFFICIENTS
HEIKO HARBORTH
ABSTRACT. Let F(n) denote the number of odd numbers in the first n rows
of Pascal’s triangle, and = (log 3)/(log 2). Then a = lim sup F(n)/n? =

l,and 8 = lim inf F(n)/n® = 0.812 556 .

It is known that almost all binomial coefficients are even numbers (see for
example [1]-[3]). This means

lim F(n)/ (” : ‘) = lim F(n)/n? =0,

if F(n) denotes the number of odd numbers in the first n rows of Pascal’s
triangle. Recently in [4] and [5] it is asked more precisely for the asympiotic
behavior of F(n). Let

(1 a=lim sup F(n)/n’, pB= Jim inf F(n)/n®,
and
(2) 0 = (log3)/ (log2) = 1.584 962 . . ..

Then it is shown in [5] that
I'<a <1052, and 072 < B < (9/7)(3/4)" < 0.815.

Furthermore it is conjectured that | and O/N3/4Y =3"/7 =081493] .
are the true values of « and B. In this note we will prove « =1 and
B=081255....

THEOREM |. a = |,
PrOOF. Since

(0)=(h)=1 and (")=0 (mod2, 1<icn-1

forn=2"r=0, I,..., we have the recursion
(3) F(2’+x)=F(2’)-+—2F(x), 0<x<2, r=01,...,
if, in addition, F(0) = 0 is defined. From (3), by induction on r, we get
(4) : F27) =3,
and thus F(27) /2% = 37 /2" = | for all r, which yields o > 1.

Next we assert
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F(2’+xq-, 2+ x)f<1 for 0<x <2, r=01,....

is is true for r = 0. If we assume the validity of (5) for all natural
abers < r — 1, we can use F(x) < 8 for 0 < x < 2" to get from (3) and

that
F(2 + x F(2) + 2F(x) . 8
( 3:(#),_7_<3;2-‘_;=f(x), 0<x<2.
(27 + x) @+ (20 + x)

DI
daf ]
dx (27 + x)

v (2r+lx9¥l _ 3r) =0

follows that f(x) has exactly one extremum. This together with f(0) = f(27)
I and f27"H =5/3" <1 yields f(x) < 1 for 0 < x <2 Thus (5) is
-oved by induction on r, and from (5) we conclude & < l.

TueOREM 2. B = 0.812 556 .. ..
PrOOF. We consider the sequence
— ¢ ; — —

) {q,}—{F(n,)/n,} with 2, =2n,_, * 1, ny=1,

here 4+ or — is chosen so that g, becomes minimal. So for r = 1.2,.. .. 25
‘e have to choose
B +—+—++—+—++—‘+—+—++—+—++f+.
{ ¢ denotes the sum of the binary digits of n,. the first eleven values of n,.
‘(n,), and ¢, are

r n, F(n) .
0 1 1 1
1 3 5 2
2 5 11 2
3 1 37 3
4 21 103 3
5 43 317 4
6 g7 967 5
7 173 2 869 5
8 347 8 639 6
9 693 25833 6
10 1 387 77 623 7

LevMa. {g, ) is stricthy decreasing.

PrROOF. We suppose
(®) FQ@n +1)/@n + 1)’> g and F2n, — 1)/ (2n — 172 4
Using (3). (4). and the binary representation of n, we obtain

ron Fiap = 1) = 3F 0y 220 =1, T
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re the reader may recognize the well-known result (see (5] for references)
wnat the number of odd (7) is 2!, where ¢ is the number of binary dig in.)
We insert (9) and (6) in (8). and substitute 2n, = 4 and 2"/(3F(n)) = b to

get
6 96— 1
1+b>(1+l) =1+Q+—£——)
a a 2a2
i+2 — [ —
© -0y - -(+1 )
oo n§(oyTEE A
( )'El a (i +2)!
& Ao —1
l—b>(1_l)=l—g+—(—’;)‘
a a 2a‘
© i+2(2—0)---(i+1—10
+9(0—1)2(2) ( )(i-+(2)' 3y
i=1 :
Addition of the last two inequalities yields the contradiction
22+ 80— 1)/at+ - >2

Thus the inequalities (8) cannot both be true, which proves the Lemma.
Now g, > 0 together with the Lemma proves the convergence of {g}. It

follows that

(10) B<q=lim g < qo=0812556...,
r—2oxC 9
with
n, =710 317

=2'9+2”+2‘5+2‘4+2“2+2‘°+29+27+25+23+ 22+ 1

We still have to prove
an F(n)/n® > 0812556 = y.
This is true for | < n < 2, and we assume the validity of (1) for I < n < 2.
To obtain the step from r to r + 1 in a proof of (11) by induction on r we
have to conclude from this assumption that (11) also holds for n = 2" + x.
1 < x < 2°. We divide this interval into eleven intervals:

n=2"m+ x, 1 < x <2777,

m=nfor s=13628, 10,

£}

m=n, — 1 for s=2,457,9,10.

Let ¢ be the sum of the binary digits of m, and 2° < m < 2*' Then for

1 < x < 27°¢ we get from (3) and (4) that
F(2'7°m + x) 37 SF (m) + 2'F(x) 3FTSF(m) + 2lyx?
= : >

(12) S o E M L ———— = (%)

2 7m+ x)g (277°m + x)g (277°'m + x)g

The unique extremum of f(x)is a minimum at
Xom = 2"‘(F(m)/ym2’)‘/(9_l).
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Form = n_ and s = 1, 3, 6, 8, 10 we check by calculation that
1-0

(13) £ (x) 2 f(Xmin) :-((F(m)/m‘p)l/(l;e) N (Yz’)l/“_m) -

is fulfilled. For m = n, — 1 and s = 2, 4,5, 7,9, 10 we ascertain that in these
cases x> 2"~". Then for s # 10, ‘

 F(ng= )+ y20 N F(n) - (1= )2t
L) 3 L) = (n )0 Y _f) Y .

)
n, oon,

is seen to be true by calculation. In the case m = n, — |, s = 10, we first -
have
3F(nyo) = (3= v)2”

fio(x) > 1027 = 7 >y, < x <277
(2 — 1)

For the remaining partial interval

n=2""n,-DH+27""+x= 2""(2/1,0 - 1)+ x < <2

we choose m = 2n,, — 1 and s = 11 in (12), and check the validity of (13).
Now the induction on r is complete, and we have proved (11) for all n.
Inequalities (10) and (11) then yield Theorem 2.
At the end we remark that g from (10) probably will be the exact value of
B. Moreover, we conjecture for all r, )

F(n)/n® >¢q, for 22<n<2*h

It seems, however, that for a general prool we should know some more
properties of the sequence of plus and minus signs beginning with (7). Arc
there any regularities in this sequence?
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