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262 - ' March 17, 1975

Dr. Neil J.A. Sloane
Bell Laboratories
Murray Hill, New Jersey 07974

Dear Neil:

Thanks very much for the copy of "Supplement I" to your handbook.
I was anxious to see whether or not the supplement contained any of
the new combinatorial sequences I discovered recently. Since it does
not, you may be interested in learning about them.

Consider the Hasse diagram of a particularly simple class of partial
orderings; I call them "sawtooths":

Here the ith Tinear chain contains Pi linearly ordered points, including
the maximal and minimal elements. Thus (since the maximal and minimal
elements are counted twice), r chains of this diagram will contain

Ny = iiPi - v + 1 points. (Clearly, P; = 2 because of this convention).
Supposé there are, in fact, just r chains. The problem is then to cal-
culate the number of Tinear orderings consistent with the given partial
ordering. If we label the points in some arbitrary but fixed fashion,
this amounts to asking how many of the N.! permutations are not excluded
by the ordinary restrictions of the diagram.

Suppose all the P; = 2. Asr increases we just get the well-known
tangent-secant numbers as a function of r - a result some 100 years old.
But now suppose all the P; = 3. Using my algorithm (to be described
below), one finds, writing A, for the number of "allowed" permutations:
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O0f course, the Pj need not be all the same; they can be any set of ordered
integers (>2). Some simple examples I have looked at are 4,3,4,3,4,3,... and
5,2,5,2,5,2,... (I have also examined, exhaustively, various finite cases
where the {Pi} run over all compositions of some given integer). One amusing
sequence - which I do not Tist here - is gotten by taking P1 =i+1,1=1,2,3,...
One might call this the "sawtooth factorial".

The iterative scheme for calculating A, is as follows:

i=1
et F{1) =
Py-2 + P.-1-m
(2) _{"2 L ‘> )
bitn =\ T o 0=mE
(| ' .{ﬂ _ [
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?(k) and E(j) are vectors with integer components, F corresponding to the odd
chains, f to the even chains. Ar = :Z:Fi(r) or :Z:L§r) according as r is odd or even.
This may Took complicated, but it is quite trivial on a computer. Naturally,
one could write A as a multiple sum, but this would hardly be helpful. I
have shown this scheme to various people, but no one has had any suggestions
as to how one might get simple generating functions out of it - if, indeed,
such exist. Stanley has concerned himself with the general problem of
"stretching" partial orderings, but so far as I can see, his results are
1ittle more than a reformulation of the problem; of course, he considers more
general situations than the sawtooth (which, as Rota remarked, is the simplest
generalization of "shuffling" 3 la Ree).

If you are interested in including any of these sequences in the next
supplement, I can supply as many as you want.

Best regards,

WM
Paul R. Stein

PRS :bwm
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March 26, 1975

Dr. Paul R. Stein

University of California

Los Alamos Scientific Laboratory
P.0. Box 1663

Los Alamos, New Mexico 87544

Dear Paul:

Thank you very much for your letter of March 17,
and the enclosed sequences. They are certainly new to me,
although they remind me of another problem which I will
describe later.

Some of these sequences ought to go in the next
Supplement. Which ones are your favorites? The two you
sent, I suppose, i.e., with all the P; = 3 and all the
P; = 4. Do you think you could send me some further terms
of these two, and any others you like? A total of 150
digits for each sequence is enough to fill two lines.

They should be listed as a private communication from you?
(There is nothing published yet, I assume.) How would you
like them to be called? And the initial value 1is Al =1,
presumably.

Have you ever looked at this problem? Suppose we _
have 'n objects L TRERPL having weights w(al),w(ag),...,w(an).
Any subset [ar,as,...] then weights w(a,) + w(a,) ... . Arrange
the o subsets of [al,...,an} in order of increagsing weignht
(and assume no two subsets have the same weight). How many of:
the 2™ possible orderings of the subsets can occur in this
way? Assume w(ay) < w(ay) < w(aB) < ... for simplicity,
which divides the number by n! TFor n = 2, the answer is 1,

as follows:
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Assume w(ay) < w(ay). Then
w(f) < w(ay) < w(a,) < w(ay+a,)

is forced. For n = 3 there are two possibilities, assuming
that '

w(ay) < w(ay) < wlag),
nanely
() < w(a) < wlay) < wlag) < wleg+ay) <
and
w(#) < wlay) <wlay) < wlay+ay) < wlag) <

T think I have two or three more terms in this sequence
in an old file somewhere, but could never find a nice
way to look at the problem. Any ideas?

Yours sincerely,

MH-1216-NJAS-mv N. J. A. Sloane
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LOS ALAMOS SCIENTIFIC LABORATORY
(ConTrACT W-7405-ENG-36)
P. O. Box 1663
Los Aramos, NEw MExico 87544

April 18, 1975

Dr. Neil J.A. Sloane

Bell Laboratories

600 Mountain Avenue

Murray Hill, New Jersey 07947

Dear Neil:

I enclose four sequences counting the number of linear
orderings consistent with my "saw-tooth" partial orderings.
For simplicity, I have chosen cases in which all the pj
are the same in each linear chain, namely the cases
3 = 3,4,5,6. In each case the number of chains goes
from 2 through 15. a; = 1 (not shown) in all cases.

None of this has yet been published. I don't know
what you should call these sequences. Perhaps, following
Stanley, we should call these "extensions'"; he would say
that the a's are the "number of ways of extending a given
partial order to a total order". You might say, "number
of extensions to total order of a certain partial order".
Tn any case, nobody will know exactly what it is unless
they inquire. The ap are also, in a sense, generalizations

of the Euler numbers, but that might be a misleading
characterization.

Hope you can use these sequences; any number of further
ones will be furnished on request. The problem you mention
does not appear,at first glance, to be directly related to
mine.

Yours sincerely,

;Tkz@{i

Paul R. Stein

PRS:bwm
encl.
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