OFFSET
0,2
COMMENTS
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
John Cannon, Table of n, a(n) for n = 0..5000
G. Nebe and N. J. A. Sloane, Home page for this lattice
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: (theta_3(q^(1/2))^5+theta_4(q^(1/2))^5)/2
Expansion of ( phi(q)^5 + phi(-q)^5 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 2^(1/2) (t/i)^(5/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A008422.
EXAMPLE
1 + 40*q^2 + 90*q^4 + 240*q^6 + 200*q^8 + 560*q^10 + 400*q^12 + 800*q^14 + ...
MATHEMATICA
terms = 44; phi[q_] := EllipticTheta[3, 0, q]; s = (phi[q]^5 + phi[-q]^5)/2 + O[q]^(2 terms); DeleteCases[CoefficientList[s, q], 0][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
PROG
(PARI) {a(n)=if(n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^5, n))} /* Michael Somos, Nov 03 2006 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved