[go: up one dir, main page]

login
A005930
Theta series of D_5 lattice.
(Formerly M5270)
3
1, 40, 90, 240, 200, 560, 400, 800, 730, 1240, 752, 1840, 1200, 2000, 1600, 2720, 1480, 3680, 2250, 3280, 2800, 4320, 2800, 5920, 2960, 5240, 3760, 6720, 4000, 7920, 4800, 6720, 5850, 8960, 4320, 10720, 6200, 9840, 7600, 11040, 5872, 12960, 7520, 12400
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. Nebe and N. J. A. Sloane, Home page for this lattice
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
G.f.: (theta_3(q^(1/2))^5+theta_4(q^(1/2))^5)/2
Expansion of ( phi(q)^5 + phi(-q)^5 ) / 2 in powers of q^2 where phi() is a Ramanujan theta function. - Michael Somos, Sep 14 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 64 2^(1/2) (t/i)^(5/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A008422.
EXAMPLE
1 + 40*q^2 + 90*q^4 + 240*q^6 + 200*q^8 + 560*q^10 + 400*q^12 + 800*q^14 + ...
MATHEMATICA
terms = 44; phi[q_] := EllipticTheta[3, 0, q]; s = (phi[q]^5 + phi[-q]^5)/2 + O[q]^(2 terms); DeleteCases[CoefficientList[s, q], 0][[1 ;; terms]] (* Jean-François Alcover, Jul 04 2017, after Michael Somos *)
PROG
(PARI) {a(n)=if(n<0, 0, n*=2; polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1+x*O(x^n))^5, n))} /* Michael Somos, Nov 03 2006 */
CROSSREFS
A000132(2n) = a(n). A008422 gives dual lattice.
Sequence in context: A044178 A044559 A092613 * A261933 A036194 A023695
KEYWORD
nonn,easy
STATUS
approved