[go: up one dir, main page]

login
A005733
Least k such that binomial(k,n) has n or more distinct prime factors.
(Formerly M1166)
4
2, 4, 9, 10, 22, 26, 40, 50, 54, 55, 78, 115, 123, 154, 155, 209, 288, 220, 221, 292, 301, 378, 494, 494, 551, 715, 670, 786, 805, 803, 1079, 966, 1190, 1222, 1274, 1274, 1276, 1771, 1836, 1807, 1834, 2147, 2263, 2519, 2519, 3021, 3306, 3306, 3427, 3441, 3445
OFFSET
1,1
COMMENTS
Table 3 in Selmer's paper has typos for n = 83, 100 and 117. - T. D. Noe, Apr 05 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ernst S. Selmer, On the number of prime divisors of a binomial coefficient, Math. Scand. 39 (1976), no. 2, 271-281.
MATHEMATICA
Table[n=k; b=1; While[n++; b=b*n/(n-k); Length[FactorInteger[b]]<k]; n, {k, 100}] (* T. D. Noe, Apr 05 2007 *)
lk[n_]:=Module[{k=n+1}, While[PrimeNu[Binomial[k, n]]<n, k++]; k]; Array[ lk, 60] (* Harvey P. Dale, May 13 2018 *)
CROSSREFS
Sequence in context: A060756 A075347 A352506 * A372915 A096692 A203847
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by T. D. Noe, Apr 05 2007
STATUS
approved