[go: up one dir, main page]

login
A005705
Number of partitions of 4*n into powers of 4.
(Formerly M0552)
9
1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 46, 52, 58, 64, 72, 80, 88, 96, 106, 116, 126, 136, 148, 160, 172, 184, 199, 214, 229, 244, 262, 280, 298, 316, 337, 358, 379, 400, 424, 448, 472, 496, 524, 552, 580, 608, 640, 672, 704, 736, 772, 808, 844
OFFSET
0,2
COMMENTS
Also number of partitions of 4*n+k into powers of 4 where k=1,2,3. - Michael Somos, Mar 15 2020
REFERENCES
R. K. Guy, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. Banderier, H.-K. Hwang, V. Ravelomanana and V. Zacharovas, Analysis of an exhaustive search algorithm in random graphs and the n^{c logn}-asymptotics, preprint 2012; SIAM J. Discrete Math., 28(1), 342-371, 2014. - N. J. A. Sloane, Dec 23 2012
M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions, Australasian J. Combin., 30 (2004), 193-196.
M. D. Hirschhorn and J. A. Sellers, A different view of m-ary partitions
M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228.
M. Latapy, Partitions of an integer into powers, DMTCS Proceedings AA (DM-CCG), 2001, 215-228. [Cached copy, with permission]
O. J. Rodseth and J. A. Sellers, On a Restricted m-Non-Squashing Partition Function, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.4.
FORMULA
a(n) = a(n-1) + a(floor(n/4)).
G.f.: T(x)=(1-x)^(-1)/(Product_{k>=0} 1-x^(4^k)), it satisfies T(x)=(1-x^4)/(1-x)^2*T(x^4). - Joerg Arndt, May 12 2010
MATHEMATICA
Fold[Append[#1, Total[Take[Flatten[Transpose[Table[#1, {4}]]], #2]]] &, {1}, Range[2, 20]] (* Birkas Gyorgy, Apr 18 2011 *)
CROSSREFS
Column k=4 of A292477.
Sequence in context: A130519 A001972 A328325 * A139542 A347656 A238616
KEYWORD
nonn,easy
EXTENSIONS
Formula and more terms from Henry Bottomley, Apr 30 2001
STATUS
approved