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ABSTRACT

We study the class of directed graphs that have indegree = outdegree =
2 at every vertex. These digraphs can be decomposed uniquely into
“alternating cycles”; we use this decomposition to present efficient
techniques for counting and generating them. The number (up to isomor-
phism) of these digraphs and the number of connected ones on up to 20
vertices have been computed and are presented.

1. INTRODUCTION

L’ We present techniques for enumerating and generating the class of regular di-
graphs whose vertices all have indegree = outdegree = 2. These graphs have
arisen in a variety of contexts but appear not to have been the objects of fo-
cused attention. For example, the teleprinter diagrams (or Good diagrams) on a
binary alphabet (see [1]) belong to this class; the Cartesian product of two di-
rected cycles [6] and; more generally, the Cayley color digraphs [7] of a finite
group with two generators are also members of this class. The central distin-
guishing feature of these digraphs, as noted in [4], is that they can be uniquely
decomposed into “alternating cycles” in linear time.

In the present article, we use the alternating cycle decomposition to develop
enumeration formulae for these digraphs and an algorithm to generate them ef-
ficiently; isomorphic copies can be discarded on the fly without having to com-
’ pare them with all previously generated members.
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2. PRELIMINARIES

We will briefly summarize the terminology and a few results from [4]. We use
[m .. n] to denote the empty set if m > n and the set {m,m + 1,..., n} other-
wise. Suppose G = (V,A) is a finite digraph and X C A (we allow loops but
not parallel arcs). X is called an alternating cycle (ac) iff its elements (arcs) can
be ordered as ¢y, e, . .., €, such that, for i in [0..2r — 1], ¢; and ¢, have
a common end-vertex [start-vertex] if i is even [odd] (where @ denotes addi-
tion mod 2r). Such an ordering is called an alternating ordering. The common
end-vertices (for even i) are called exit vertices and the common start-vertices
(for odd i) are called entry vertices of X. An arc e; of X is called clockwise [anti-
clockwise] if i is even [odd]. If a vertex is both an exit vertex and an entry ver-
tex of X, it is called a saturated vertex. If X has no saturated vertices, we say it
is a simple ac. If X contains all the vertices of G we say that it is a spanning ac.

If G has indegree = outdegree = 2 at every vertex, we say that G is a
2-diregular digraph (2-dd). A 2-dd can be uniquely decomposed into acs in lin-
ear time [4]. Figure 1 shows an example of a 2-dd composed of 2 acs X and ¥,
each with six arcs; their exit, entry, and saturated vertices are also shown. Fig-
ure 2 shows a 2-dd with three acs, all of which are simple but only one is span-
ning. The acs of Figure ! are neither spanning nor simple.

Suppose the acs of G are X,, ..., X, and |X;| = 2m, for i in [1..k], and
m; = m,.,. Then, the k-tuple 2m,,...,2m,) is called the ac-profile of G.
Clearly, if two 2-dds are isomorphic, they must have identical ac-profiles, but
the converse may not hold.

Suppose G is a 2-dd. Let G = (V',A") be the digraph obtained by splitting
each vertex w of V into two vertices w' and w” such that all incoming [outgo-

Ca)

(e
X Y
Exit vertices 2,5,3 |[1,4.8
Entry vertices 1,4,3 (2,5,86
Saturated vertices 3 6

FIGURE 1.
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FIGURE 2.

ing] arcs of w become incoming [outgoing] arcs of w' [w"]. Let b be the bijec-
tion from {w”|w in V} to {w'|w in V} defined by b(w") = w'. Clearly G’ is
merely a collection of vertex disjoint simple acs with |V’| = 2|V| and |A'| =
|A|. In other words, we have

Proposition 2.1. Suppose G = (V, A) is a digraph such that A = {X,,...,X,}
(k = 1) is a collection of vertex-disjoint simple acs with |X,| = 2m, and m, <
m.,,. Let P = {v]v is an entry vertex of some X} and Q = {v|v is an exit ver-
tex of some X,}. Then

(a) every bijection b from P to Q yields a (unique) 2-dd by identifying w and
b(w) for each w in P, and

(b) every 2-dd with ac-profile (2m,, . .., 2m,) can be obtained as in (a) from
at Jeast one such bijection.

Proof. Follows since the ac decomposition is unique [4]. 1

Suppose G, V,A,X;,m;, P, and Q are as in the above proposition. Let
n = Zm,;. Assume that the vertices of P are numbered from n + 1 to 2n and
those of Q from 1 to n. Let M, be the set of all bijections from P to Q. We
define an equivalence relation ~ and a partial order < on M, as follows:
b ~ b' iff b and b’ yield isomorphic 2-dds; b < b’ iff b ~ b’ and
(b(n + 1),...,bQ2n) = (b'(n + 1),...,b'(2n)) in the usual lexicographic
ordering of tuples. Each equivalence class of ~ is totally ordered in M, and
hence has a unique minimal element. We now have the following corollary of
Proposition 2.1:

Corollary. There is a one-to-one correspondence between the minimal ele-
ments of (M,, <) and the isomorphism classes of 2-dds with ac-profile

2m,,...,2m,).

Figure 3 illustrates the 2-dds obtained from the minimal bijections for the ac-
profile (4, 6). We now present a criterion for minimality of a bijection.

Proposition 2.2. b is minimal iff b < fbf ~' for every automorphism f of G.
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FIGURE 3.

Proof. b is minimal iff b < b’ for every b’ in the equivalence class of b.
The result now follows since ' and b yield isomorphic 2-dds iff there is an au-
tomorphism f of G such that 5’ = fbf ™', 11

3. ENUMERATION

In this section we derive a formula for the number of nonisomorphic 2-dds with
a given ac-profile; the numbers obtained from this formula can then be used to
get the number of nonisomorphic connected 2-dds using the methods of [2, pp.
90-93].

By Proposition 2.1 it suffices to consider the simple acs into which any 2-dd
can be split and the bijections from the set of entry vertices to the set of exit
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vertices. Hence, we need only count the number of equivalence classes of the
equivalence relation ~. By Burnside’s lemma, [2, p. 39] this number is given
by

> # of bijections fixed by f
fEF
IF] (D

where F denotes the set of automorphisms of the set of (simple) acs under con-
sideration.

An automorphism f divides the sets of entry and exit vertices independently
into disjoint cycles; let us call them entry cycles and exit cycles, respectively. If
S fixes the bijection b, then for any entry vertex, we have fb(x) = bf(x); thus, if
x lies on an entry cycle of length ¢, the images of all vertices on that cycle un-
der b are determined by b(x) and they form an exit cycle of length ¢. From this,
we deduce part (a) of

Proposition 3.1. Let f be an automorphism (of a set of acs) such that exactly m
of its entry cycles are of length ¢. Then,

(a) f fixes some bijection => exactly m of the exit cycles of fare of length ¢,
and

(b) the number of independent choices of images under a bijection fixed by f
of the vertices in the entry cycles of length ¢ is cm(em — ¢)(em — 2¢)
oo fem — (m = Dc] = ¢"m!

Proof.  After choosing an image for one of these entry vertices, there are ¢
fewer exit vertices left for the next choice.

Now suppose f has i, entry cycles and j, exit cycles of length & for

k =1,2,.... Following [2, pp. 35-38] we define the cycle type of f to be the
monomial

y’;lyg e zﬂ‘z’f o 2)

and the cycle index of the set of acs by the formula

> cycle type of f

fEF |F| (3)

By comparing formulae (1) and (3) we find that the number of nonisomor-
phic 2-dds with a given ac-profile is found by replacing each cycle type in the
cycle index of the corresponding set of acs with the number of bijections fixed
by any automorphism with that cycle type. This latter number is found by ap-
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plying Proposition 3.1 to each set of cycles of a given length and multiplying
over all the cycle lengths. Combining these results, we have:

Proposition 3.2. The number of nonisomorphic 2-dds with a given ac-profile
is found by computing the cycle index of the corresponding set of acs and then
making the following substitutions into each monomial:

(a) each factor (yz,)" is replaced by ¢"m!;
(b) each factor y" without a mate of the form z.', or vice versa, is replaced
by 0.

We now find the cycle index of an arbitrary set of simple acs, starting with a
single ac. We recall that an automorphism must preserve entry and exit ver-
tices; thus the group of automorphisms of an ac with 2n arcs is just the dihedral
group D, (rather than D,,) whose cycle index is given by [2, pp. 36-37]. The
formulae given there are easily modified to accommodate our definition of cy-
cle type to yield

1
20,) = 5 (R + Y <P(£) y;,,z;,) @)

rin r
nyzys 2y if n is odd
where R = n
—(y3z, + 22y )ys P2 otherwise,

2
and ¢ is the Euler totient function.

Next we compute the cycle index for a set of k acs, each with 2n arcs. It fol-
lows from the results of [2, pp. 178—182] that the group of automorphisms of
this set of acs is the Wreath product of the automorphism group of a single ac
about the full symmetric group S, representing the permutations of the & acs in-
duced by these automorphisms. The cycle index of S, is given in [2, p. 36]:

25)-~ 3

k! o _
J1 412 Jk
— . X xk ®)]
R Y T A e k
R a3y + k=i 112 Rt g!

The cycle index of the above-mentioned Wreath product is denoted by Z(S,)
[Z(D,)] and is found by replacing each x; in (5) above by (4) after first
“inflating” (4) by multiplying all its cycle lengths by :.

Finally, we compute the cycle index for the general set of acs: assume we
have k; acs each with 2n; arcs for each i in [1..¢]. Since any automorphism
takes each ac into another with the same number of arcs, the cycle index for
this set is just the product:

[1 2z, [sD,)]. (6)

i=1

.
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L’ Applying Proposition 3.2 to the cycle index for a general set of acs [given by
formula (6)], we found the number of nonisomorphic 2-dds for each ac-profile
with up to 20 vertices. The number of connected ones was also computed; we
omit the details, since the methods of [2, pp. 90-93] for counting connected
graphs by the number of edges as well as vertices are easily generalized from
one extra variable (the number of edges) to an indefinite number (the ac-pro-
file). The results are given in full in [5] and are summarized in Table 1 of the
present article.

The computations were done on a DEC VAX 8600 and took 42 seconds of
CPU time to run. The code is approximately 400 lines of FORTRAN and uses
about 2 megabytes of memory.

4. GENERATION

Our generation procedure uses a backtracking procedure [3] for generating per-
mutations in lexicographic order; this algorithm generates permutations b by
trying all possible values for b(i) and then calling itself recursively to try all
values for b(i + 1). The generation can now be summarized as follows:

1. Use a backtracking procedure to generate the n! bijections (from
[n + 1..2n]to[1l..n])in lexicographic order; let b be the initial segment of a
bijection constructed so far.

TABLE 1. V\§&4:;/// VQQ*;g/

". ) No. Connected -
Vertices ///”’"‘W%Q 2-dds 2-dds

2 ;/)( 1

3 3

4 é;lf( 7

5 24

6 131 117

7 711 663

8 5055 O 4824

9 41607 40367

10 389759 381554

11 4065605 4001849

‘ 12 46612528 46043780
13 3 581713045 576018785

14 7846380548 7783281188

v 15 113718755478 112953364381
16 1762208816647 1752128923245

17 29073392136390 28930230194371

18 508777045979418 506596534953769

19 9412803430912738 9377358316123127

20 183565340753506398 182952980397576097

2 Aol e F

N



478 JOURNAL OF GRAPH THEORY

2. As each alternative is tried for b(i) in Step 1, determine whether b can be
eliminated right away by checking some easy criteria for nonminimality; if so,
try the next alternative for b(i), backtracking if necessary.

3. When a bijection b not eliminated in Step 2 is found, check if there is an
automorphism £ such fbf ~' < b, if not, output b as a minimal bijection.

We have generated all minimal bijections for 2-dds with up to 11 vertices.
The numbers obtained by enumeration and generation confirm one another;
since both numbers were obtained by computer programming, such confirma-
tion is very valuable. The actual CPU times (on a DEC VAX 11/780) are given
in [5] and a brief extract, for n = 11, is given in Table I. The last column
shows the number of minimal bijections output per second on the average.

We have found a series of five criteria for nonminimality that can be used in-
Step 2: the details are provided in [5]. Clearly, Step 3 is likely to be very time
consuming, especially when the number of automorphisms is large; hence, the
more bijections that can be eliminated in Step 2, the faster the generation is
likely to proceed. Columns 5 and 6 of Table 2 (the entries are rounded to the
nearest integer) demonstrate the dramatic effectiveness of these criteria: for ex-
ample, for the ac profile (4,4, 4,4, 6), there are, on the average, around 22914
nonminimal bijections for each minimal one; of these, all but 23 are eliminated
in Step 2. Even so, approximately 90% of the time is spent in Step 3 of the al-
gorithm. The program is approximately 1200 lines of Pascal source code.

TABLE 2.
No. Minimal No. Reaching n! Col.4 CPU time

n ac-Profile  Bijections Step 3 Col.3 Col.3 (h:min:s) No.s
11 44446 1742 40653 22914 23 0:05:44 5
11 4666 9800 75901 4073 8 0:08:49 19
11 4468 30594 223251 1305 7 0:28:02 18
11 688 55745 308199 716 6 0:29:36 31
11 44410 12704 130383 3142 10 0:15:57 13
11 6610 63780 239203 626 4 0:23:38 45
11 4810 128818 540251 310 4 0:55:12 39
11 4612 150390 660195 265 4 1:11:05 35
11 1012 334728 649209 119 2 0:45:22 123
11 4414 96765 498145 413 5 0:55:21 29
11 814 357759 792155 112 2 0:59:47 100
11 616 441186 1428876 90 3 2:02:10 60
11 418 565269 1861461 71 3 2:53:40 54
11 22 1816325 4226331 22 2 4:44:37 106
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