[go: up one dir, main page]

login
A005632
Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
(Formerly M3923)
1
0, 0, 5, 22, 258, 1628, 18052, 145976, 1837272, 18407664, 265312848, 3184567136, 52020223648, 728304073664, 13317701313600, 213083801827200, 4314950946864000, 77669134543011584, 1725980887361498368, 34519618313219995136, 835374767116711506432, 18378244896208168541184
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence mu(2k+1).]
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
MAPLE
For Maple program see A005635.
MATHEMATICA
c[n_] := Module[{k}, If[Mod[n, 2]==0, Return[0]]; k = (n-1)/2; If[Mod[k, 2] == 0, Return[k*2^(k-1)*((k/2)!)^2], Return[2^k*(((k+1)/2)!)^2]]];
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n - 2)*B[n - 4]];
S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
Q[n_] := Module[{m}, If[Mod[n, 8] != 1, Return[0]]; m = (n-1)/8; ((2*m)!)^2 /(m!)^2];
a[n_] := (c[2n+1] - S[2n+1] - Q[2n+1])/4;
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
CROSSREFS
Sequence in context: A115657 A066865 A183902 * A183408 A298322 A299215
KEYWORD
nonn
EXTENSIONS
More terms from N. J. A. Sloane, Sep 28 2006
STATUS
approved