[go: up one dir, main page]

login
A005628
Number of chiral planted trees with n nodes.
(Formerly M1641)
1
0, 0, 0, 0, 2, 6, 20, 60, 176, 510, 1484, 4314, 12624, 37126, 109864, 326958, 978528, 2943384, 8895792, 27001378, 82281216, 251636434, 772101086, 2376186784, 7333094178, 22688117658, 70360646672, 218678194238, 681016789056
OFFSET
0,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
FORMULA
a(n) = A000625(n)-A005627(n) (given as g(n)=s(n)-p(n) on p. 357 of the Robinson et al. paper). - Emeric Deutsch, May 16 2004
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 1 to 55 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od:p[0]:=1: for n from 0 to 50 do p[n+1]:=sum(s[k]*p[n-2*k], k=0..floor(n/2)) od:seq(s[n]-p[n], n=0..37); # here s[n]=A000625 and p[n]=A005627(n)
MATHEMATICA
nmax = 28;
s[0] = s[1] = 1; s[_] = 0;
Do[s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n, {n, 1, nmax}];
p[0] = 1;
Do[p[n+1] = Sum[s[k]*p[n-2*k], {k, 0, Floor[n/2]}], {n, 0, nmax}];
a[n_] := s[n] - p[n];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Jul 07 2024, after Maple code *)
CROSSREFS
Sequence in context: A082045 A358301 A361732 * A000620 A081251 A134293
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, May 16 2004
STATUS
approved