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With two cosine terms about a third and with three cosine
[crrL\out half as many shifts arc needed as for an arbitrary &
The nber of additions varies from about a fifth as many at

=1 to about a filteenth or sixteenth as many at n = 5.

It should be noted that if the processor used to implement this
118 4 or & bitshifts, the number of shifts is greatly reduced. Also, it
hould be stated that this can be implemented 1n hardware with
thout 30 MSI TTL packs for the case n=7,r=2 a= [, and
f=16.

Asymptotic Approximations for the Number of
Fanout-Free Functions

EDWARD A BENDER axp JON T. BUTLER

thstract— Expressions arederived for the approximate number of
lunctions realized by various n-variable fanout-free networks. Six
ceently studied networks are considered. It is shown that therelative
.:mber of functions realized by two networks for small and largen is
quite different in certain cases.

Index Terms-—Asymptotic approximations, cascades, combina-
torial logic, fanout-free networks, function enumeration, switching
‘wnetions.

. INTRODU CTION
During the recent past, considerable interest has developed in
he § it-free network where cach gate has a fanout of one. This
'-;Lms been motivated by the relative easc with which faults
can be detected [1] and by technological restrictions, such as in
magnetic bubble togic where the difficulty of reproducing bubbles
Uiees a high premium on single interconnections between logic
wdules {2} In particular. Huayes [3] considered fanout-free
cworks of anp's.or's. and inverters: Chakrabarti and Kolp [4],
utler and Breeding [S]. and Marouka and Honda [6], [7] have
nsidered networks of AnD's. OR's, exclusive Or's, and inverters:
foodandapani and Seth [8] have considered networks which also
rclude the majority function. A special case of the fanout-free
ctwork, the cascade. has received considerable attention (viz.
aitra [91 and Mukhopadhyay [10]). Cascades are fanout-[ree
~tworks in which each gate connects to at least one net input.

One wav to measure the relative merits of various circuits is to
compare the number ol n-vanable functions realized. However, as
vo show, this can be deceptive since the relative number of func-
tons realized by two networks for small n may be quite different
than for large 1. As a basis of comparison, six different networks
are considered, Let FSY(n) be the number of n-variable [unctions
reahzed by networks whose topology T is a cascade (C) or unres-
icted fanout free (FF), and whose component modules C A are
cwo-input AND gates (), two-input Or gates (O), two-input exclu-
sive OR gates {E). threc-inpul majority gates (M), and inverters
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Thc pdrucular networks of interest are

1) unate cascades [10] — F27¥(n)

2) Maitra cuscades‘ [9] - —F"””""(n)
3) fanout-free # 1 [1], [3]—F{P¥(n)
4) fanout-frec #2 [R] FPMY(n)
5) fanout-free #3 [4]-[7] -F 25 (n)
6) fanout-free #4 [8] -F7f"Y ()

For all but onc of the ncmorks listed,! recursive relations have
been derived and have been evaluated at least up to n =7
However, computation time and the farge values involved pre-
clude computer evaluation much beyond this. TFor cach network,
we give an asymplotic approximation, a closed-form expression
which approximates the function’s behavior for large n. From this,
it is a straightforward process to determine the relative merits of
various gates and topologies. Although the approximations hold
for large n, they are reasonably accurate in the range of n where
computer evaluation of recursive relations becomes cumbersome.
We use the following conventions.

F
F(n) ~ G(n) means ,,“ji GE::_; -1
F(n) = o(G(n)) means ,.I-ijz gt: =0
I, C/\SC,-\DF,

Butler [11] has shown that the number ol n-variable functions
which are Maitra cascade realizable for n > 1 is piven as

a=1

> (=

p=1

FiOF¥(n) = 1y (;) Q7+ DEL - p)

B ('_ I)"(E" + ”[_-(nm—.\“) [])

where FE2#¥(1) = 2. in order to derive an asymptotic approxima-
tion, we will make use of a result in Bender [12) which requires
the generating function of FE9F¥(n). Let FI7'¥(v) be the exponen-
tial generating function of F!°"*(n). Thus,

FMYF\'(”)

n!

F('“”'b\'(.\') — N4 2w (2)

Substituting (1) into (2) and rearranging yiclds

FROR(v) = N S A RIS Y NG

n=2 p=1i I]'
SAOEN( nep < 1y(m
Rt & (G L
(n-p " ()
Define
=3 (_l)(zi+l)\'"zfl‘z"+c"+3.\‘—2. (4)
o n!
Comparing (3) and (4) yields
FROEN(G) = SO)F VY () — 28(x) + 2v (5)

where $(x) is the derivative of S(v). Solving for F7F¥(x) and
substituting (4) yields

N 2 —2x —e Tt -
FAOEN(() = 2 —_— 6
¢ (\) ¢ b,\+€—x_2 ( )

U As far as known, a recursive expression has not been published for F7%(n). A
derivation 1s shown 1n the next section
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CORRESPONDENCE

r use of the following result.

Tafind the asymptotic approximation corresponding to (6), we
”u'orum I (Bender [12, p. 498]): Suppose A(x) = Y = a, X" is
analytic near 0 and can be written in the form

Ay = hix) + ,l 1

L=z g(x)

where z is the only singularity of 1(x) such that [«| < | /] forall
other singularitics ff ol AA(x). Further,if g and I are analytic near 2,

we=0, - 1. =2, and g(x) =0, then

gl
g~ 7
T{w)a" )
where T'(w) is the gamma funcuon.
The singularitics of F{!?*Y(\} are poles at x = f where
2 g e - 220, (8)

Solving {8) Tor f# yields

4
f = In st
—1+ 17

There s a unique [ of least modulus, namely. the real number
4
a=1In - ——=. (9)
-+ /17
The pole at x = xas simple, and so w = 1. We need g(x) where

foxy e
FRORN () = 1 ] - \

c T x

Solve [1U)tor g(x ). and [et v -» 2 Using 'Hopital's rule to evaluate
the limit yields

g{v) (10)

I = 2{e” +2)

glr) =2 = ().288. 11
1 1((" -+ 4) ( )
Since a, = FM ) nt, we have from (7)
[y
FOY) ~ ntglx) r _() =n! 0.288(4.047" (12)

This venlies a conjecture by Butler [11]. The degree to which (12)
approximates the evacr number ol functions 1s very good. The
aceuricy s 60001 0.02,0.0002, 0.0001, and 0 000003 pereent for
=20 0405 and Toorespectively.

A closed-Torm upproximation for the number of unate cascade
functions s obtamed in o similar manner. The recursion refation
for £ (n) cun be obtuined (see [11]) by obwerving that the con-
tribution of the exclusive or eates in the term 220 + 1ol (1) s
+1 (while sNp or or gates each contribute 27),

oo
Feur= 3y [0 O e ) = (- )
g p
(13)
where FAON) =2 The generating Tunction lor {13) 1s
Y PR
1_-‘u>_\(7\,) SR lJ (14)

1 —2¢

As before, Theorem |can be applicd. vielding

PNy~ ot (1 o :'1)( :

5
Qa0 7 %)

"

= ! 04430289y  (15)

N

for 2 = In 2 Fhisapprovimation is also very good. Forn = 2.3,

1181

4, 5, 6, and 7 the accuracy is respectively 7.9, 3.0, 0.06, 0.005,
0.0005, and 0.00007 percent. Comparing (15) with {12) shows that
the fraction of Maitra cascade realizable functions which are
unate cascade realizable becomes vanishingly small as »
approaches oc.

ITI. FaANnouUT-FREE NETWORKS
The asymptotic approximations for one case only, Fi?"¥(n),
will be derived. Expressions for the other cases folow in a like
manner. A function realized by a fanout-free network consisting of
A, 0, E, M, and N gates can be classified according to the output
gate used in a canonical realization of that function. This realiza-
tion excludes N as an output gate except for the case where the
number of inputs n = 1. Thus, for n > 1, there are lour sources of
functions, 4, O, E, and M. Let A{(n), O(n), E(n), and M(n) be the
number of fanout-free functions on »n variables in which the
outpul gateis the AND, OR, exclusive OR, and majority gate, respec-
tively. From Kodandapani and Seth [8], we have
N T n> |

X ()

Ne 14,00 .M

(16)

where

X(n)=5% X(n, T)

1

(17)

The sum in (17) s over all partitions (additive factorizations) T of
n except the trivial partition 00 -+ On. X'{n, T)is the number of
lunctions on n variables realized with output gate X associated
with T,

For convenience, T represents repeited parts with exponents:
for example, partition 111244 of 1315 written as 12342 Let p be
the number of nonzero parts of T In this examiple, p = 3. We use a
somewhat modified version of Kodandapani and Seth's equations
for X{(n, T):

A, T) = n! '[j) [‘o(,-) + E(i) :I M(i) + N[f’))“‘ kl[! (18)
O(n. T) = ' l]ju (._»1 (i) + E(7) 7! M) + N(:‘))*‘ ;;l,! (19)
E(n, T)= 2! ﬂ ["lw " O(i)—:—!'—\’m ’ M'))k' Y,IA‘! (20)
Mn, T)
_ur i (MOLOOLED LMD ML

=0 otherwise n

where the partition T is given as 1824 - n*(k,, = 0) and where
X(0)=X({1)=0Tlor X = Nuand N(O)= 1, N[I}) = 2. Substituting
(18) into (17) and adding O(n) + E(n) + M{n) + N(n) to both
sides yields

FAAY ) =

ik ke o O
Thy v 2ky 1 nky=n
[ [0 + EG) + MG+ NG 1

The terms O(n) + E(n) + M{n) == N{n)on the right side have been
absorbed mthe sum, which is now over all parutions. The expo-
MY ) s then

nen L ogencrating function of £
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TABLE T
GIENERATING FENCITONS AND ASYMPTOTIC APPROXIMA VIONS
FOR Six FaNou T-FrEF NETWORKS

ALGEBRAT C NUMERIC
ASYMPTOTIC ASTHMPTOTLL
I'NETIO EXPRESSTON EXIPRESSTON
AON F _‘,_LI X Arran
FAN Ly I g . _:7:’;1’2{}; o = Ty? aCh e st
o
AUVEN Zh P S D % BT B
F (n i ol (e 42 i ! ;&= ln]—_-—]Z at(L2RH) (4, 0"
o " - o Y.ﬂ) FARTY i
AON 2 peltle gt L 1y 1 “
F.. (n) F o : ni| = 5 73 | Vo 2= ln2- 0! (G351 =505 1)
Fi 5% ; Y5
) * =g ol b nl (L 1BT) 5 (8. 54
n
] oy o Pl /1 n
n S - = — —_—
) F(F+1)=1 T (W, nt (. 20
n
' ez ey wa—E g 663"
@) F(ren=a T S D n!(.1-...)n},._\,...z.m
x 10OEMN N = sy B . . . -
Fron = 3 Fifi (n) w) = 0. Suppose there exist real numbers » > 0 and 5 > a, such
H } n= 0 n! that
. a) Tor some & > 0, F(z, w)is analytic whenaver [z <r+0
= v and |w! < s +0
— -
e T 0) Flr ) = Fulr ) =0
Lky r 2k = v rikn ]
) Fr, sy = 0and F,.(r.5)=0
n 1 : : k, R .
B H ( )4 E() + M)+ N 1, Jiflzf <r pw] <s;and F(zow) = F(zow) = 0. thenz = r
‘ ) : i k;! und W= S
Then

Ihe right side can be rewritten as follows (Knuth [13, p. 92]):

SOk -
! 71‘0},\1\(:) — CXP( >_‘ )A("\) :k + Z
koo . A0

£ M(k) < N{k)
Y Sk Yo ok
! VvTo k! * kz k!

—

E(kY
kT

— 1

Since the sums in the exponent are the exponenual generating
inetions O(z), E(z). M(z). and N{(z). we have
(22)

FREN ) = exp (O(2) + E2) + M)+ N - 1)

[he generating functions corresponding to (19), (20). and (21) are
Dtained ina simidar manner. Thus,

FROUN ) = eap (12} + E2) + M)+ N2 - 1) (23)
PN R 1 = exp (0() + Az) + M)+ NE) = 1) (29)
nd

M{z) = §FTNE) - D) (25)
\so.
N{z)= 2+ 1 (26)
Multiplying (22), (23). and (24) and substituting (25) and (26)
vields
"-kl;‘ N, lt)l'\f\( )+ l)
=2 (FME) - L o+ SN Y 0en

We now use the lollowing result
Fhearem 2 (Bender [120p. s
w(z) = L,,’ ooy 2

Assume that the power series
I (=

with  nonnegative coctiicients satisties

(28)

rand wo=y.

where the partial derivatives are evaluated at =
Let w = F775Y(2) and set

w)=

Since F(z, w)is analytic everywhere, a) of the theorem is satisfied
Satisfy b) by setting F(r. s) = F (r.s) =0 Thus

Fl:. wlw + 1) = 2exp ((w = 1)+ (Hiw

st 3T -3 -4 =0 (29)
and
2 3
s;o+ s, s, = 1
r:|n((” 2”)]~.s,+1—(‘ 12) (30)

where s, is a root of (29) The roots of (29) were found by
computer. One is positive real, one is negative real and the other
two are complev. Choosing the positive real root vields s, = 1505
and = 0.1182. These values satisiy d) of the theorem. Condition
¢) is satisticd as follows: F.(r. sy = - 377 and F(r.x)= =322
All conditions of Theorem 2 are satistied, and thus

|

AR
n

FLOPUN )~ 0t 0148 80" ()

The approvimate values for small ware not guite s accurate as m

the case of cascades. Forn = 2.3, 4. 5 6.und 7. (3 1) approvmites
15, 11 8 7. und 6 pereent,

the exact values to within 25,
respectively.

Table [* shows the generating functions and the asymptotic

T Certin algebrane enprossions are nol histcd because the patametens of (Inpwere
cvalugted by compater They myvolve the detesmuation of the roats ob g pohnomial

N

of order sater than 2
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P Y ExacT NUMBER OF FUNCTIONS REALIZED §
X

FANOUT-FREE NEfWORKS

/ /177

/

a FCAON(M F';;)N(n)/_ 4 F;\Sﬂn(n) P‘:SEN(n) F‘;S“'”‘\’(n)

2 o | [3)/o | U8 /e [y fo| [g]p0

3 ‘ 64 / 64 ] / 114 //122 '}'

4 f 7306 832 /2154 J 2,554 | .

5 /10,62 15,104 26,304 56,946 / 75,386 | /

6 183,936 02,570 | / 352,256 773,376 /1,935,210 2,865,370 ‘49
7 3,715,072 [s30.658 | [10,037, 28 [ 27,792,386\ [ 80,371,122 | J133,191,386 J

R 7F—C
approximations for olhcrhw@)c accuracy of the approxi-
mations for all four unrestricted fanout-frec networks is compar-
able to the accuracy stated lor FRZPY“(n). Exact valucs lor
FIOFN(n) are known out to n =15 ([11]) where the accuracy
improves to 3 percent.

1V, CONCLUDING REMARKS

Consider now the relative number of functions for the various
networks. The following conclusions can be made from Table L.

1) The fraction of n-variable fanout-free functions which are
cascade realizable becomes arbitrarily close to 0 as n approaches
»  for two  cascs, FONm) = o(Fi2N(n)
[.'(l()l \(”) — “(1.‘.:'(.)[,'\(”)).

1.c.,

N~—

and —[#]

A e
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and Seth [8]

4) The relative number of functions for large n can be quite
different than for small n. In Table 1. 1f we compare 10EN
with  tON fanout-free nctworks, and with 1OMN
fanout-free networks, we see that FEOYm) = o(F'M () and
FAN ) = of FRY Y (). However, for small wa different situation
exists. Table T lists the exact numbers of Tunctions lor the six
networks considered * It shows for 2 = n < 6 1OEN cascades
realize more functions than cither 1ON or 10OMN fanout-free
networks.

cascades

The asymptotic approximations for the six networks suggest
that  the behavior of cascades and  fanout-free
networks with general component module sets have the same
charactenstics of the speatfic examples shown heres 1 this 1s the
case, the addition ol w distinet module to the module setin gencral
enlarges the function sct by an arbitranly large amount as the

asymptotic

number of variahles approuaches infinity.
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On the Generation of Permutations in
Magnetic Bubble Memories

C. L CHEN

Abstract - A better algorithm is presented for the generation of an
arbitrary permutation in a model of magnetic bubble memories that
have been investigated previously.

Index Terms
memory.

Generation of permutations, magnetic bubble

I INnTRODUCTION
in [1] Wong and Coppersmmith investigated the problems of
data accessing and permutation generating based on two models
of magnetic bubble operations.
In this note we present a new algorithm for the generation of an
arbitrary permutation for the second model i [1]. The algorithm
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