OFFSET
1,3
COMMENTS
The sine of 2017 times this number is the near-integer 0.999999999999999978567771261.... - Alonso del Arte, May 03 2013
With the present number r = 2^(1/5) and the golden section phi = A001622 the other (complex) roots of x^5 - 2 are given by x1 = r*exp(2*Pi*i/5) = r*(phi - 1 + sqrt(2 + phi)*i)/2 = r*(A001622 - 1 + A188593*i)/2 = 0.3549673131... + 1.0924770557...*i, x2 = r*exp(4*Pi*i/5) = r*(-phi + sqrt(3 - phi)*i)/2 = r*(-A001622 + A182007*i)/2 = -0.9293164906... + 0.6751879523...*i, and their complex conjugates. - Wolfdieter Lang, Dec 06 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
Equals Product_{k>=0} (1 + (-1)^k/(5*k + 4)). - Amiram Eldar, Jul 25 2020
From Peter Bala, Mar 02 2022: (Start)
Equals (3/2)*Sum_{n >= 0} (1/(5*n+2) - 1/(5*n-3))*binomial(1/5,n). Cf. A002580.
Equals (5/4)*hypergeom([-1/5, -3/5], [7/5], -1). (End)
EXAMPLE
1.148698354997035006798626946777927589443850889097797505513711118493603....
MATHEMATICA
RealDigits[N[2^(1/5), 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2012 *)
PROG
(PARI) { default(realprecision, 20080); x=2^(1/5); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005531.txt", n, " ", d)); } \\ Harry J. Smith, May 12 2009
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
EXTENSIONS
More terms from Olaf Voß, Feb 13 2008
STATUS
approved