


. .
%/O[l ot 27, /7‘??&'2?'
TSelpi ET 25
poay B Slpaus - Fliaslusig, VY. /34
T flsdl e oy su- pdithed " Uniguie! Sunse-
YT o Wi S T
1S Up-2, 1963- ‘
@QW&&W@M 4 %WZM/W
apbilino 4y wipd) - Wipovie Wald - aud Ly Ruchaed J Hose.
QMM%wﬂWWMW«; S cau Jaued
fpu sessnaty ody =11 o Wy eou Aotienit
7[”%#1%%%1%%%%&\/ ﬂﬁ%cé
Qasdsn Iathuiliind Speisty , V1.3, 1956 , pJ60 /65
Q2 Lk taly Vit cueludiy gt Wt ¥ ia il
ko — o dliek MWWW%WM%

YT T st s
ol TSl - il
w w@%%%WW'%[ L/
ﬁum%@ﬁé%%ﬂ s 0 '%Mfw
QWMM%DWWWW%%M%W 2
P.8.9 pit a modlduy Asike st %
?/"WJ/Y 72‘“4/54 W MoRRIS WALD
W%m@;tmw TG )77 S

FLUSHING, NV, 1R bl

4 st
‘ ﬂg-QkﬂWM '
B ditsut s kBl Y fou st



A paper.
~ and for n <{36, so that further improvement by the present method will

Q{s be hard won.

168 J. LEEcH

estimate in (c') is to replace 3-348 by 3-341, and if (b’) were proved with

= §, the result would only be to replace the upper estimate by 3-333.
These are the corresponding values of (I+42)%/(N-+1) for the basis given
above in full, which is the best of any we have constructed for A in this
range. Itislikely that more substantial improvement in the upper estimate
can be obtained by the direct construction of bases by the present or other
methods, as we have found several times during the preparation of this
We have, however, exhausted the present construction for m < 183

II1. Difference bases with respect to n for some small values.

In order to obtain detailed information about the structure of those
difference bases which minimise % or ! for given n, we have constructed
exhaustively the general and restricted difference bases which maximise n
for each £ <C 7 and for each [ < 8, and have also constructed some difference
bases for greater » including some which are maximal for ¥ = 8 and for
I = 9 but which may not exhaust the difference bases giving these maxima.
These bases are given in a table.

The exhaustive construction was effected by means of assessing for
indefinite n the different ways of representing n, n—1, n—2, ...; that is,
the difference bases are constructed inwards from their ends. At each
stage of the construction, the redundancy p is assessed, this being the
number of pairs of members of the basis which do not contribute because
their difference is either greater than n+1 or equal to that between some
other pair. We have constructed in this way all general difference bases
with p <3 and all restricted difference bases with p <{5.

In the table, the numbers in each basis are represented by points and the
differences between them by the numbers in the tables. 1In our experience
the structure ofa difference basis is much more perspicuous when it is given
in this way, and the similarities between the various bases are more evident.
The entries in the column for unrestricted difference bases are limited to
those general bases which are not restricted bases—where there are none,
the value of n for the restricted bases is given in brackets. There are to
such unrestricted difference bases having n as great as for the restricted
differencz bases with the same number of terms for & <{4, since in these

cases the redundancy is zero, and we have failed to construct any with
k=9. The entries in the table for k, =10, 11 have in each case the
largest n of any we have constructed, and if any be found with larger,
an improvement of the upper estimate in (c¢) or (c¢’) will be obtained. In
proving that 7 = 29 is maximal for /=19, we have used Brauer’s result
- #(30) = 10 in_eonjunction with our own results for p =5 which show that
In) =10 fo :31. It should be noted that {(n) is not necessarily a non-
decreasing function of n although k(n) is. The entries for I = 9 were con-
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structed by analogy with those for !==8, while those for k > 8 were
constructed from perfect difference sets by selecting a suitable set
by, b,, ..., and adjoining one or more terms b, +m, by+m, .... This method

~i8 less fruitful for larger values of n. 18 and 24 are the smallest values of
n such that k(n) <<I(n) and the only ones for which we have proved this so.
The basis given for k= 8 is that quoted at the end of §I, that given for
! =10 is that usad for the set (1') in the example of §II.

i TABLE.
Unrestricted Restricted
difference bases. diffsrence bases.

k n I = . )

1 (0) 1 0 .

2 (1) 2 1 .1.

3 (3 3 3 .1.2,

4 (6) 4 6 .1.3.2,

5 9 .3.1.5.2. 5 9 .1.3.3.2.
.4.1.2.6. .1.1.4.3.

6 13 .4.1.1.7.3. 6 13 .1.1.4.4.3,
.6.1.2.2.8. .1.5.3.2.2.
.1.3.6.2.5., .1.3.1.6.2,
L1.7.3.2.4.

7 18 .6.3.1.7.5.2 7 17 .1.1.4.4.4.3.
.8.1.3.6.5.2 .1.1.1.5.5.4.
.14.1.3.6.2.5 .1.1.6.4.2.3.
J13.1.2.5.4.6 1.1.6.4.3.2,

.1.3.6.2.3.2.,
) .1.7.8.2.2.3.

8 24 .8.10.1.3.2.7.8. 8 23 .1.1.9.4.3.3.2.

1.3.6.6.2.3.2,

9 (29) 9 29 1.1.12.4.3.3.3.2

1.3.6.6.6.2.3.2
1.2. 8.7 W . 4sl.

10 37 .16.1.11.8.6.4.3.2.922._ 10 36 1.2,8%%.7.9. 804 .1
.7.15.5.1.3.8.2.16.7.

11 45 .18.1.83.9.11.6.8.2.5.28 2.8:7.- 7. 784 .4.1

King’s College,
Camb, dge.
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EMBEDDINGS IN SEMIGROUPS WITH ONE-SIDED DIVISION
P. M. Conni.
1. By a semigroup we shall understand & set with a single-valued binary

operatio.n_(denoted by juxtaposition: ab) defined on it, which is
associative: a(bc) = (ab)c.

t Received 15 March, 1955; read 24 March, 19055, k
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148 / SOLUTIONS TO PROBLEMS AND CONJECTURES

For what values of # is this possible such that no two knights arrive at the
same place?

Solution by E. C. Buissant des Amorie, Amstelveen, Netherlands

It is only possible for odd n. Say n=2m + 1. There are m pairs with sum n:

[1+@-1],[2+@-2)],.... Going clockwise, you can place knights with
their numbers 1,2, ...,mn, (n-m),(n-m-1),....

For even n it is impossible. Proof:

Let the knight-numbers be: 123..

.2m  Sum=mQ2m+1)

and the permutation-numbers be: Sum =m(Q2m + 1).

Adding modulo 2m gives the impossibility:'
m(2m + 1) + m(2m + 1) =m(2m + 1)(mod 2m).

*1192. Unequal Sums by Morris Wald, Flushing, NY (JRM, 15:2, p. 143)

Let S be a set of posifive integers less than or equal to n. As a function of 7,

how many members may S contain such that no two disjoint subsets of S have
the same sum?

Partial Solution by Friend H. Kierstead, Jr., Cuyahoga Falls, OH

Let p be the maximum number of members of S such that all of the sums are

unequal. We will determine upper and lower bounds on p for all positive integer
values of n.

Letn=2Pi"1 Then the set (1, 2, 4, . .., 2Pi"!) contains p; members and
generates uniquely all of the positive integers from 1 to 2P/ ~ 1. Therefore,
p 2 p; and p; is a valid lower bound for n = 2Pi=1 and in fact for all values of n
from 2Pi~! to 2Pi - 1,

The pigeonhole principle furnishes an upper bound for p, say p,. The largest
sum that can be generated by p,, integers less than or equal to n is

¥p,(2n - p + 1), and this must be larger than the number of sums generated by
all subsets of S, which is 2P¢ - 1. Therefore,

%lpu(zjl_pu-*‘l)}zpu— 1,

n> [ 24+ %p,(p, - 1)- 11/,

From this relation we can readily find all values of n for which p,, is an upper
bound on p.

whence,

We now have all of the information to construct the accompanying table. The
first column lists a value of p; or p,,; the second column shows the range of values
of n for which the p in the first column is a lower bound; the third column shows
the range of n for which the p is an upper bound; the fourth column shows the
true range of n as hand-calculated by Mr. Wald to p =9 and to p = 16 by Richard
L. Hess of Palos Verdes, CA; the fifth column shows a few example subsets by
Mr. Hess. It may be seg= that for a given value of n, Wald’s value. for p never
differs by more than 1 _ 1 the lower bound. Also, the upper and lower bounds
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= 06,
are identical up ton =5, differ by nst}more than 1 up ton =12, by 2uptol
and by 3 up to 4013 ar 57 )%

Lower Upper Wald & Hess Examples of Subsets
p I" .,
1 1 1 1 1

2 23 2.3 \ 23

3 47 4-5 | 4-6

4 815 6-8 L 7-12 7,6,5,3 ;

5 16-31 9-12 | 13-23 13,12,11,9,

6 32-63 13-21 24-43 24,23,22,20, 17, 11

7 64-127 22-35 44-83

8 128-255 36-60 84160

161-308
9 1256-511 61-106 .
10 512-1023 107-191 | 309-593 309, 308, 305, 302, 296,

285, 265, 225, 148
11 1024-2047 192-346 .594-1163
12 2048-4095 347-636 1164-2283
13 4096-8191 637-1176 2284-4483
14 8192-16383 1 177-2191 4484-8806
15 16384-32767 2192-4013 8807-17304
16 32768-65535 4014-7718 17305-34300

2,p- 143
1193. Pentomino* Packing II, by Yoshio Ohno, Tokyo, Japan (JW, 15:2, ph h4s)
Fill each of the large figures below with the set of 12 pentominoes. Each ha

PR B R s B

* Pentomino is a registered trademark of Solomon W. Golomb. (
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ATA&T Bell Laboratories 600 Mountain Avenue

Murray Hill, NJ 07974-2070
201 582-3000

February 12, 1987

Mr. Morris Wald
75-61 177 Street
Flushing, N.Y. 11366

Dear Mr. Wald:

Thank you for your kind letter of January 27. I was aware of Leech's
sequence, but I had not seen the other before. Yes, I am collecting material for the
second edition. Enclosed is a paper related to Leech’s.

Yours sincerely,

N. J. A. Sloane
NJAS:yc

Enc.
As above -



