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1. Introduction

Let a, denote the number of topologically distinct ways in which an oriented line and a Jordan
curve in the plane can cross at 2n points.* Call such figures ‘*‘Amol’d figures’’ of size n. Other objects
counted by a, include: the_ ‘‘planar permutations’ of 2n letters (Rosenstichl & Tarjan), the ‘‘rooted
plane graphs with unique bjcycles” with 2n edges (Rosenstiehl), the *‘simple alternating transit mazes”
of depth 2 (Phillips), the ‘‘oriented folds’’ of loops of 2n postage stamps (Phillips’s generalization of
Koehler). A two colored tour of 2n given points in the plane is a polygon whose vertices are the given
points, whose sides are colored alternately red and blue, such that no two red sides cross and no two
blue sides cross. The number of two colored tours of 2n given distinct points on the circumference of a
circle is a,. Finally, suppose the real axis in the complex plane is a river, with bridges at
z=1,2,..2n~1. A road (that is, a curve) leads from —ico t0 +ico, which (1) does not cross itself, (2)
crosses the river only at bridges, and (3) crosses the river exactly once at each bridge. We call such a
path a ‘“‘meander’’. The road necessarily visits all the bridges in some order, a permutation of
{1,2, - - - ,2n—1}. The number of such river crossing permitations which arise from meanders is also
a,. Figures 1, 2, and 3 illustrate some of these trivial equivalences in the cases a;, a,, and as, and
Table 1 lists all known numerical values for a,.

Fig 1 goes about here: a =1, a,=2, a;=8
Jordan curves + line.

Fig 2 goes about here: a,=1, a,=2, a;=8
2 colored tours
(solid line = red, dashed line = blue)

Fig 3 goes about here: a =1, a,=2
river & road
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* The quanptity a, has been independently discovered and studied by several people, including ;Rosenstiehl, ﬂ arjan, Phil-
lips, anc}\ll}ﬁﬁlol'd. It has been recently most intensely studied Why Amol’d, Lando] and Zvonkin; we leamed
rom!

about a, Amol’d by a personal communication.
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Unfortunately, although a, has a simple definition there is no simple formula for computing a, or for
estimating its numerical order of magnitude. This paper presents a new recipe for calculating numerical
values of a, (which we used to calculate’ the values in Table 1) and bounds on the asymptotic growth
rate of a,.

It is easy to see that a, is submultiplicative, and that
Cp S a, < c,‘2
where ¢, denotes the n—th Catalan number, ¢, = 22Cn | (n+1). Hence the limit
a = lima,'’”
R—)oo
exists, and since limc,!” = 4, we see that 4 < a < 16. Our main effort is aimed at determining better

upper and lower bounds for a. Our current best result is that 8.8 < a < 13.01.
It is tempting to conjecture (from the known numerical values) that the ratios a,/a,-; increase as
n increases. This would then imply that @ = lima,/a,_; 2 a14/813 = 9.6185, but we have been unable
R-Foo
to prove the monotonicity of @,/a,-;.

Lando [ref] has derived number theoretical properties of a, such as the fact that for prime p,
a, = 2 ( modulo p), and evep, for g=p*, a, = 2 (modulo p). These results may be obtained by studying
actions of the 2n —th cyclic and dihedral groups on the two colored tours of 2n points, but are not of
interest to us in this paper.

2. Submultiplicativity
By composing river and road diagrams one can derive various inequalities. These include:
AmGp < Omn—1
which is the same as saying d,.; is submultiplicative, and
20,0, < Gpmsn
which is the same as saying 2a, is submultiplicative. These imply that for each n, we have a 2 al'®
and a 2 (2a,)''", respectively. Taking the best known values for a, these yield a 2 6.760 and
a 2 6.197 respectively.
(If m and n are restricted to be greater than or equal to 2 a more complex argument gives the
stronger inequality
9
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but this seems useless.)



3. Catalan and Simple Upper bound

Recall that the Catalan numbers ¢, count balanced parenthesis expressions of size n, that is,
sequences of n left parentheses and n right parentheses ordered such that each prefix sequence has at
least as many left parentheses as right parentheses. Thus, () () () and (() ()) are balanced
parenthesis expressions of size 3 and ) (() () and ()) (() are not. (All such expressions can be
uniquely obtained from the trivial (size 0) expression and from repeated combinations (x)y of simpler
expressions x and y; hence the generating function for the Catalan numbers obeys the equation
C () =1+zC(2)*)

Associated with each Arnol’d figure of size n is a distinct pair of balanced parenthesis expressions
of size n, as illustrated in Fig 4. This implies a, < ¢,2. It is not hard to see that for any given expres-
sion T there is at least one other expression of same size, B, such that the pair T, B corresponds to some

Armol’d figure; hence ¢, < a,.

Suppose a given Amol’d figure of size n corresponds to expression pair T, B, where
T=tity - t5, and B=b,b, - * - b,,, where each of ¢; and b; is either the symbol ( or the symbol ).
Then there is no i for which ¢;=b;=( and ¢ ,;=b;,;=). Let X=x,x5 - - - x,, represent T and B merged,

so each x; is an element of the four letter alphabet {a, b, ¢, d}, where a = E, b= )(, ¢ = )(, and d = ;

7 . . .
so that x,-:b'_. Then the symbol sequence X contains no instance of a followed by d. Thus a, is

bounded by the number of all sequences of 2»n letters from the alphabet {a, b, ¢, d} in which the word
ad is forbidden. Elementary means show that the number of such sequences is given by an expression
of form C,; A% + C,M,%" where the A; are the roots of the polynomial x2—4x+2 and the C; are non
zero. Hence the number of such sequences is roughly (2+\/_3_ y** and hence the exponential growth rate
for the a, obeys a < (2+V3)?=13.9282 - - - .

4. Tightest Upper bound

The upper bound in the previous section can be strengthened, using an improvement of an idea of
Lehmann’s. The starting point is to consider the set of all ¢ca? topologically distinct ways in which an
oriented line and a finite number of Jordan curves in the plane can cross at 2n points, each Jordan curve
crossing the line at least once. Call such an arrangement a ‘‘Lehmann’’ figure of size n; they are in one
to one correspondence with pairs of arbitrary balanced parenthesis expressions of size n. In each Leh-
mann figure there is a distinguished Jordan curve, namely thepone which crosses the oriented line See
Fig 5 for an example. The distinguished Jordan curve and the oriented line thus form an embedded
Armol’d figure of size k where k<n; any remaining Jordan curves in the Lehmann figure are each either
inside or outside the distinguished curve. Thus we have an equation

an = ZZ Z Ir(Yk)Os(Yk)
k=1v, r+s=n-k
where the sum extends over all possible distinguished Arnol’d figures v, of all possible sizes k, where
the notation 1,(y) denotes the number of ways to place Jordan curves inside Y with exactly r crossings
and where the notation O,(}) denotes the number of ways to place Jordan curves outside y with exactly
s crossings.

5. Mcllroy’s Lower bound

Lower bounds on a, or on @ may be obtained by precise counting of particular systematically con-
structed subsets of Arnol’d figures. The largest subset we have been able to count precisely is due to
M. D. Mcllroy. We count ‘‘river crossing’’ permutations of the first 2n —1 integers. Given any such
permutation p = p, py *** Pa.—1 an odd block is a sequence of an odd number of consecutive sub-
scripts i, i+1, -+ j=i+2k such that the set of numbhcrs {p;, piyi, = ,p;} is a set of consecutive
imegefs, although possibly in mixed order. (For instnc, if n=3 the permutation 1,2,7,6,5,4,3 has
an odd block of size 3, with i=3 and j =5, becausc thc set {7,6,5} is a set of consecutive integers.)
Given any such odd block form a new permutauion ¢ by flipping the odd block, as follows:
q=p1P2" " PicPiPj—t " PistPiPj+1Pjx2 " Pra-1. Thatis, g =q192 " qan- where ¢,=p, if
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t<i or t>j and q=p;4j_, if i<t<j. (For example, 1,2,7,6,5,4,3 can be flipped this way to
1,2,5,6,7,4,3.)

Mcllroy observes that any odd block flip of a river crossing permutation is also a river crossing
permutation, so the number of distinct permutations derivable from 1,2,3, - - - ,2n—1 by repeated appli-
cation of odd block flips is a lower bound on a,. A key observation here is that in any such permua-
tion, the odd blocks used for flips nest, and the resulting permutation is completely determined by the
odd blocks which were used for an odd number of flips. This in turn is related to the fact that each of
the odd block flips is an example of a ‘‘braid’’, and that the flips corresponding to nested or disjoint
blocks commute in the braid group B (2n —1).

6. Stamp folding

7. Computational formula



