[go: up one dir, main page]

login
A005308
Bosonic string states.
(Formerly M0310)
2
1, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 8, 14, 16, 25, 31, 47, 58, 85, 107, 153, 195, 271, 348, 480, 616, 834, 1077, 1445, 1863, 2478, 3194, 4216, 5431, 7118, 9157, 11942, 15329, 19884, 25485, 32916, 42090, 54147, 69093, 88563, 112769, 144056, 183028, 233112, 295525
OFFSET
1,7
COMMENTS
See the reference for precise definition.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. Curtright, Counting symmetry patterns in the spectra of strings, in H. J. de Vega and N. Sánchez, editors, String Theory, Quantum Cosmology and Quantum Gravity. Integrable and Conformal Invariant Theories. World Scientific, Singapore, 1987, pp. 304-333.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
FORMULA
G.f.: Product (1 - x^k)^{-c(k)}; c(k) = 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, ....
Euler transform gives sequence with g.f. = x^3/((x+1)*(x-1)^2), Simon Plouffe, Master's Thesis, UQAM 1992.
a(n) ~ 2^(1/4) * exp(1/24 - 25*Pi^4/(3456*Zeta(3)) - 5*Pi^2 * n^(1/3) / (24*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2) / (A^(1/2) * sqrt(3) * Zeta(3)^(23/72) * n^(13/72)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 26 2016
MATHEMATICA
nmax = 50; Rest[CoefficientList[Series[x/(1-x)*Product[1/(1-x^k)^((2*k - 5 + (-1)^k)/4), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 10 2016 *)
CROSSREFS
Sequence in context: A222710 A032278 A222738 * A151532 A056503 A256217
KEYWORD
nonn
STATUS
approved