A 6251 A 259966-9 can G. vy lellob 2 Ruges A sequención

2500 University Drive N.W., Calgary, Alberta, Canada T2N 1N4

2/5/86

Department of MATHEMATICS & STATISTICS

Telephone (403) 220-5202

86:02:05

Neil J.A. Sloane, AT&T Bell Laboratories, Room 2C-376 600 Mountain Avenue, Murray Hill, New Jersey 07974.

Dear Neil,

I expect that some wise words about lexicodes and the advisability or otherwise of my attempting to preach thereon are now winging their way to me. I write now to send you yet more sequences. The paper with Richard Austin (copy enclosed) has come into its own again! (I say again, because it also reared its beautiful head in "Anyone for Twopins?" in The Mathematical Gardner.)

Norbert Sauer, Richard Nowakowski and others here have been investigating a problem on graphs, which, for paths in particular, needs the number (α_n in the paper) of sequences of zeros & ones with no isolated ones. It also needs the total weight s_n of these sequences. α_n satisfies a recurrence with characteristic equation $x^3 - 2x^2 + x - 1 = 0$; s_n satisfies one whose equation is the square of that. There are many simple relations satisfied by a_n and $s_{_{22}}$. Perhaps the simplest for purposes of calculation are

$$a_n = a_{n-1} + a_{n-2} + a_{n-4}$$
 and $s_n = s_{n-1} + s_{n-2} + 2a_{n-2} + s_{n-4} + 3a_{n-4}$.

22 23 25 26 $a_n = 17991$ 31572 55405 97229 170625 299426 525456 922111 1618192 2839729 $s_n = 18878$ 350038 646880 1192415 2192956 4024583 7371884 13479421 24607048 44853552

Next they wanted the number, c_n , of circuits and their total weight, $w_{n^{\bullet}}c_n$ satisfies the same recurrence; w_n is a multiple of n, and w_n/n satisfies the same recurrence. a_n & c_n are asymptotic to $c\gamma^n$ and s_n & w_n to $en\gamma^n$ (with a different e in each case) where γ is the real root of x^3 - $2x^2$ + x - 1 = 0. The ratios s_n/na_n and w_n/nc_n are both asymptotic to $(2\gamma - 1)/(3\gamma - 1)$. $w_n/n = a_n - a_{n-3}$

259967/20000/

												2	590	167/	2599	68/2	59969
n	=	0	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$\binom{c}{n}$	=	3	2 2	5	10	17	29	51	90	158	277	486	853	1497	2627	4610	8090
$\frac{w_n}{w_n}$		(2)	1 1	3	6	10	17	30	53	93	163	286	502	881	1546	2713	4761
w_n		0	1 2	9	24	50	102	210	424	837	1630	3146	6024	11453	21644	40695	76176
n	=	17		18		19		20		21		22	23		24		
$\binom{c}{n}$) =	14197		24914		43721		76725		134643		236282	414646		727653		
WA	(n)	8355		14662		25730		45153		. 79238		139053	244	021	428227		
		14	142035		263916		488870		903060		1663998		3050166 5612		483	10277448	
$n \longrightarrow$	= 25		26		2		27										
$\begin{pmatrix} \hat{c}_n \end{pmatrix}$) =	12	7694	2	4	2240877		3	393246								
w_n	$\sqrt{n} = 751486$		-	1318766		2	2314273										
$\left(\widehat{w}_{n}\right)$	$(w_n) = 18787150$			34	4287	7916	62	24853	371								

The later values could do with checking! (Later: have done.)

 $$\operatorname{\textsc{Will}}$$ you be able to drop in on the Strens Conference on your way to Berkeley? I hope so.

Best wishes,

Yours sincerely,

Richard K. Guy.

RKG:jw

encl: offprint

Strens Conf. notice.