[go: up one dir, main page]

login
A005234
Primorial plus 1 primes: primes p such that 1 + product of primes up to p is prime.
(Formerly M0669)
23
2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, 24029, 42209, 145823, 366439, 392113, 4328927, 5256037, 6369619
OFFSET
1,1
COMMENTS
Conjecture: if p# + 1 is a prime number, then the next prime is less than p# + exp(1)*p. - Arkadiusz Wesolowski, Feb 20 2013
Conjecture: if p# + 1 is a prime, then the next prime is less than p# + p^2. - Thomas Ordowski, Apr 07 2013
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 211, p. 61, Ellipses, Paris 2008.
H. Dubner, A new primorial prime, J. Rec. Math., 21 (No. 4, 1989), 276.
R. K. Guy, Unsolved Problems in Number Theory, Section A2.
F. Le Lionnais, Les Nombres Remarquables, Paris, Hermann, 1983, p. 109, 1983.
Paulo Ribenboim, The New Book of Prime Number Records, p. 13.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 112.
LINKS
C. K. Caldwell, Primorial Primes.
C. K. Caldwell and Y. Gallot, On the primality of n!+-1 and 2*3*5*...*p+-1, Math. Comp., 71 (2001), 441-448.
H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3, 1987), 197-203. (Annotated scanned copy)
H. Dubner, A new primorial prime, J. Rec. Math., 21.4 (1989), 276. (Annotated scanned copy)
H. Dubner and N. J. A. Sloane, Correspondence, 1991.
Des MacHale, Infinitely many proofs that there are infinitely many primes, Math. Gazette, 97 (No. 540, 2013), 495-498.
Eric Weisstein's World of Mathematics, Euclid Number.
Eric Weisstein's World of Mathematics, Primorial Prime.
FORMULA
a(n) = A000040(A014545(n+1)). - M. F. Hasler, May 31 2018
MAPLE
N:= 5000: # to get all terms <= N
Primes:= select(isprime, [$2..N]):
P:= 1: count:= 0:
for n from 1 to nops(Primes) do
P:= P*Primes[n];
if isprime(P+1) then
count:= count+1; A[count]:= Primes[n]
fi
od:
seq(A[i], i=1..count); # Robert Israel, Nov 03 2015
MATHEMATICA
(* This program is not convenient for large values of p *) p = pp = 1; Reap[While[p < 5000, p = NextPrime[p]; pp = pp*p; If[PrimeQ[1 + pp], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 31 2012 *)
With[{p = Prime[Range[200]]}, p[[Flatten[Position[Rest[FoldList[Times, 1, p]] + 1, _?PrimeQ]]]]] (* Eric W. Weisstein, Nov 03 2015 *)
PROG
(PARI) is(n)=isprime(n) && ispseudoprime(prod(i=1, primepi(n), prime(i))+1) \\ Charles R Greathouse IV, Feb 20 2013
(PARI) is(n)=isprime(n) && ispseudoprime(factorback(primes([2, n]))+1) \\ M. F. Hasler, May 31 2018
(Magma) [p:p in PrimesUpTo(3000)|IsPrime(&*PrimesUpTo(p)+1)]; // Marius A. Burtea, Mar 25 2019
CROSSREFS
Cf. A006862 (Euclid numbers).
Cf. A014545 (Primorial plus 1 prime indices: n such that 1 + (Product of first n primes) is prime).
Cf. A018239 (Primorial plus 1 primes).
Sequence in context: A119388 A093487 A067933 * A254225 A334026 A140561
KEYWORD
nonn,hard,more,nice
EXTENSIONS
42209 sent in by Chris Nash (chrisnash(AT)cwix.com).
145823 discovered and sent in by Arlin Anderson (starship1(AT)gmail.com) and Don Robinson (donald.robinson(AT)itt.com), Jun 01 2000
366439, 392113 from Eric W. Weisstein, Mar 13 2004 (based on information in A014545)
a(23) from Jeppe Stig Nielsen, Aug 08 2024
a(24) from Jeppe Stig Nielsen, Sep 01 2024
a(25) from Jeppe Stig Nielsen, Sep 24 2024
STATUS
approved