[go: up one dir, main page]

login
A003701
Expansion of e.g.f. exp(x)/cos(x).
(Formerly M1259)
13
1, 1, 2, 4, 12, 36, 152, 624, 3472, 18256, 126752, 814144, 6781632, 51475776, 500231552, 4381112064, 48656756992, 482962852096, 6034272215552, 66942218896384, 929327412759552, 11394877025289216, 174008703107274752, 2336793875186479104, 38928735228629389312
OFFSET
0,3
COMMENTS
Binomial transform of A000364 (with interpolated zeros). Hankel transform is A055209. - Paul Barry, Jan 12 2009
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..485 (first 101 terms from T. D. Noe)
T. Chow, Fair permutations and random k-sets, Problem 11523, Amer. Math. Monthly 117 (October 2010), 741; solution by Jim Simons, Amer. Math. Monthly 119 (November 2012), 801-803.
J. W. Layman, The Hankel Transform and Some of its Properties, J. Integer Sequences, 4 (2001), #01.1.5.
FORMULA
G.f.: 1/(1-x-x^2/(1-x-4x^2/(1-x-9x^2/(1-x-16x^2.... (continued fraction). - Paul Barry, Jan 12 2009
E.g.f.: exp(x)*sec(x). - Zerinvary Lajos, Apr 05 2009
E.g.f.: 1+x/H(0); H(k)=4k+1-x+x^2*(4k+1)/((2k+1)*(4k+3)-x^2+x*(2k+1)*(4k+3)/(2k+2-x+x*(2k+2)/H(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Nov 15 2011
G.f.: 1/G(0) where G(k)= 1 - 2*x*(k+1)/(1 + 1/(1 + 2*x*(k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 20 2012
G.f.: -1/x/Q(0), where Q(k)= 1 - 1/x - (k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 26 2013
G.f.: (1-x)/Q(0), where Q(k)= (1-x)^2 - (1-x)^2*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 04 2013
a(n) ~ n! * ((-1)^n*exp(-Pi/2) + exp(Pi/2)) *(2/Pi)^(n+1). - Vaclav Kotesovec, Oct 08 2013
G.f.: Q(0), where Q(k) = 1 - x*(2*k+1)/( x*(2*k+1) - 1/(1 + x*(2*k+1)/( x*(2*k+1) + 1/(1 - x*(2*k+2)/( x*(2*k+2) - 1/(1 + x*(2*k+2)/( x*(2*k+2) + 1/Q(k+1) ))))))); (continued fraction). - Sergei N. Gladkovskii, Oct 22 2013
G.f.: Q(0)/(1-x), where Q(k) = 1 - x^2*(k+1)^2/( x^2*(k+1)^2 - (1-x)^2/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 21 2013
EXAMPLE
G.f. = 1 + x + 2*x^2 + 4*x^3 + 12*x^4 + 36*x^5 + 152*x^6 + 624*x^7 + 3472*x^8 + ...
MAPLE
G(x):= exp(x)*sec(x): f[0]:=G(x): for n from 1 to 54 do f[n]:= diff(f[n-1], x) od: x:=0: seq(f[n], n=0..22); # Zerinvary Lajos, Apr 05 2009
# second Maple program:
b:= proc(u, o) option remember;
`if`(u+o=0, 1, add(b(o-1+j, u-j), j=1..u))
end:
a:= n-> add(`if`(j::odd, 0, b(j, 0)*binomial(n, j)), j=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, May 12 2024
MATHEMATICA
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ Exp[ x ] / Cos[x], {x, 0, n}]] (* Michael Somos, Jun 06 2012 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace(exp(x)/cos(x))) \\ Joerg Arndt, May 07 2013
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(x)/Cos(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Oct 14 2018
CROSSREFS
Bisections are A000795 and A002084.
Sequence in context: A010551 A349282 A276230 * A255432 A275539 A356062
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended and reformatted 03/97.
STATUS
approved