OFFSET
1,2
COMMENTS
All the prime numbers in the set of positive fundamental discriminants are Pythagorean primes (A002144). - Paul Muljadi, Mar 28 2008
Record numbers of prime divisors (with multiplicity) are 1, 5, and 4*A002110(n) for n > 0. - Charles R Greathouse IV, Jan 21 2022
REFERENCES
Henri Cohen, A Course in Computational Algebraic Number Theory, Springer, 1993, pp. 515-519.
M. Pohst and Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, 1989, page 432.
Paulo Ribenboim, Algebraic Numbers, Wiley, NY, 1972, p. 97.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..3001 from T. D. Noe)
Steven R. Finch, Class number theory, 2005. [Cached copy, with permission of the author]
Britta Habdank-Eichelsbacher, Unimodulare Gitter über Reell-Quadratischen Zahlkörpern, Ergänzungsreihe 95-005, Univ. Bielefeld, 1995. See Section 4.2.
Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
Eric Weisstein's World of Mathematics, Dirichlet L-Series.
Eric Weisstein's World of Mathematics, Fundamental Discriminant.
Eric Weisstein's World of Mathematics, Class Number.
FORMULA
Squarefree numbers (multiplied by 4 if not == 1 (mod 4)).
a(n) ~ (Pi^2/3)*n. There are (3/Pi^2)*x + O(sqrt(x)) terms up to x. - Charles R Greathouse IV, Jan 21 2022
MATHEMATICA
fundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[SquareFreeQ[d] && d != 1]]; m = d/4; Return[SquareFreeQ[m] && Mod[m, 4] > 1]; ]; Join[{1}, Select[Range[200], fundamentalDiscriminantQ]] (* Jean-François Alcover, Nov 02 2011, after Eric W. Weisstein *)
Select[Range[200], NumberFieldDiscriminant@Sqrt[#] == # &] (* Alonso del Arte, Apr 02 2014, based on Arkadiusz Wesolowski's program for A094612 *)
max = 200; Drop[Select[Union[Table[Abs[MoebiusMu[n]] * n * 4^Boole[Not[Mod[n, 4] == 1]], {n, max}]], # < max &], 1] (* Alonso del Arte, Apr 02 2014 *)
PROG
(PARI) v=[]; for(n=1, 500, if(isfundamental(n), v=concat(v, n))); v
(PARI) list(lim)=my(v=List()); forsquarefree(n=1, lim\4, listput(v, if(n[1]%4==1, n[1], 4*n[1]))); forsquarefree(n=lim\4+1, lim\1, if(n[1]%4==1, listput(v, n[1]))); Set(v) \\ Charles R Greathouse IV, Jan 21 2022
(Sage)
def is_fundamental(d):
r = d % 4
if r > 1 : return False
if r == 1: return (d != 1) and is_squarefree(d)
q = d // 4
return is_squarefree(q) and (q % 4 > 1)
[1] + [n for n in (1..200) if is_fundamental(n)] # Peter Luschny, Oct 15 2018
CROSSREFS
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Eric W. Weisstein and Jason Earls, Jun 19 2001
STATUS
approved