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Abstract

Exact formulas are derived for the number of symmetries in several
types of unlabeled trees with vertices of restricted degree. The trees are d-
trees whose vertices have degree at most d and (1,d)-trees whose vertices
have degree 1 or d. These results together with similar results for the
number of such trees provide formulas for the expected number of
symmetries in these trees.

These trees give rise to significant examples in polymer chemistry.
For example, (1,4)-trees represent the alkanes and 4-trees represent the
carbon skeletons of alkanes. The expected number of symmetries in such

trees is important in the study of collections of molecular species formed
during some chemical reaction process.

1. Introduction

The enumeration of trees is an important problem in graph theory
with a distinguished history as well as applications to theoretical chemistry.
The first major work in this area was performed by Cayley who determined
exact formulas for the number of labeled trees [C89], the number of rooted
trees [CS7] and the number of free trees [C7S, C81]). These resuits were
extended and an asymptotic analysis of the numbers was provided by Polya
[P37] and Otter [048].

Cayley's work [C75] was motivated by the problem of enumerating
isomers of alkanes, compounds of carbon and hydrogen atoms which have
valencies of 4 and 1 respectively. The alkanes have the general formula
CyHoy.2 and can be represented by (1,4)-trees. They are the best

documented family of chemical compounds and provide a modei for much of
chemical theory [GoK73)]. Generalizing (1,4)-trees, we have (1,d)-trees, which
give rise to other meaningful examples in polymer chemistry. There is a
correspondence between (1,d)-trees and d-trees that also has chemical
significance. While 4-trees correspond to the carbon skeletons of alkanes
[GoK73], d-trees in general correspond to skeleton polymers, ie., polymer
molecules that have been stripped of their reactive end groups {GoT76].
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The problem addressed in this paper, the enumeration of symmetries
in (1,d)-trees and d-trees for d = 3, 4, is also motivated by chemistry. In the
study of collections of molecular species, it is almost always the average of
some property over an appropriate class of trees that is required. In
computing such an average, it is necessary to assign weights to the various
trees in the class so as to reflect the (not usually equal) proportions in which
they are formed by the chemical process involved. The proper assignment
of weights to the trees often involves the orders of their automorphism
groups [GoL75]. Consequently, chemists are interested in the orders of the
automorphism groups of large trees of various species such as (1,d)-trees
and d-trees.

The tool used to do the counting is a two-variable generating function,
an approach that seems to have originated in the work of Etherington [Et38].
For a given class C of trees, let t(x,y) be the generating function in two

variables 1 and y such that the coefficient of y®@x0 is the number of trees T
in C of order n in which m i3 the logarithm base 2 of the order of the

automorphism group of T. In t(x.2), the coefficient of 12 is the sum of the
orders of the automorphism groups of all such trees.

The technique used to do the counting was developed by Pétya [P37],
perfected by Otter [048] and described as a twenty step algorithm for
counting various types of trees by Harary, Robinson and Schwenk [HRS75].
The generating functions t(x,y) and t(x,2) satisfy functional equations from
which recurrence relations for their coefficients are determined.

In this paper, the technique is illustrated and resuits given for (1,3)-
trees. Exact formulas are determined for the number of symmetries in both
planted and free unlabeled (1,3)-trees. These resuits together with similar
resuits for the number of (1,3)-trees provide formulas for the expected
number of symmetries in these trees. A study of the asymptotic behavior of
the number of symmetries in such trees will appear in Part II of this series.
A brief sketch of the general approach is provided in the short research
announcement [KMPR].

2. Geperating Functions

While equations are given for (1,3)-trees only, the method has been
used to enumerate symmetries in four types of trees: d-trees and (1,d)-
trees for d = 3, 4 [Mc87] and may be applied for higher values of d.

We begin by defining a generating function that counts symmetries in
planted trees of the specified type. In general, the results for planted trees
provide a means for obtaining the results for free trees. However, removing
the root of a planted (1,3)-tree leaves a binary tree that has the same
automorphism group as the original planted (1,3)-tree. Thus, when counting
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symmetries in planted (1,3)-trees we are also counting symmetries in binary
trees.

For the planted trees of each type, a two-variable logarithmic
generating function is defined as follows:
o0

T(xy) - 2 szmymxn (2.1)
n=1 m

For d-trees, Ty  is the number of pianted trees T of order n+l in
which m = log,Il'(T)l, where I'(T) denotes the automorphism group of T.
Every (1,d)-tree, planted or free, has 2 modulo (d-1) vertices. This is taken
into account in the definition of T(x,y) for (1,d)-trees. In this example, since
every planted (1,3)-tree has an even number of vertices, T, ; is defined to
be the number of planted (1,3)-trees on 2n vertices (or binary trees on 2n-1
vertices) with 2® symmetries .

The values which m may assume in the sum (2.1) depend on both d
and the type of tree. Since an automorphism of a rooted tree must leave the
root fixed, the order of the automorphism group of a planted (1,3)-tree is of
the form 2™ where m is an integer ranging from 0 ton-1.

Note that when y = | is substituted in (2.1), T(x,1) counts the number
of planted trees of the specified type. Substituting y = 2 in (2.1) resuits in a
one-variable generating function which counts symmetries in planted trees
of the specified type. Let S, be the total number of symmetries in all
planted (1,3)-trees on 2n vertices.

S = 2T m 2D (2.2)
m
and
Q0
T(x2)= D Spx® (2.3)
n-1

Similarty, t(x,y) can be defined for free trees. However, we actually
only work with t(x,2). Thus, we define

o0
t(x,2) = ZSan (2.4)
n=1
which counts symmetries in free, i.e., unrooted trees. For (1,3)-trees, s, is
the total number of symmetries in all free (1,3)-trees on 2n vertices.



3. Functional Relations

To obtain the exact formulas for the number of symmetries in these
trees, functional relations satisfied by T(xy), T(x,2) and t(x,2) are now
derived.

First observe that rooted and planted trees of a specified type can be
formed from planted trees of that type. A rooted tree in which the root has
degree k is formed by taking a collection of k planted trees and identifying
their roots to form the root of the new tree. Adding a new vertex adjacent to
the root of this rooted tree results in a planted tree in which the degree of
the vertex adjacent to the root is k+1. Based on this observation, relations

expressing T(1,y) in terms of T(x,y), T(x2,y%), and T(x3,y3) are derived.

Theorem 3.1 The generating functions T(x,y) and T(x,2) which count
symmetries in planted (1,3)-trees satisfy

Ty) = x+ 3 Ty + ly - 3) Ta2iy?) (3.1)
and

T(x2) - 1+3T@ 22 + 3TG24) (32)

Proof: The vertex adjacent to the root of a planted (1,3)-tree has
degree | or 3. The term x counts the symmetries in a planted K, the only
planted (1,3)-tree in which the vertex adjacent to the root has degree 1.

To count symmetries in those trees in which the vertex adjacent to the
root has degree 3, two cases must be considered. Suppose T is the planted
(1,3)-tree formed from the planted (1,3)-trees Ty and T, in the manner
described above. If T; » T,, then we have [[(T) = I[(T)l IT(Ty)l. Then
1/2(T(xy) - T(x2y?)) counts symmetries in this case. If T = T,, then we
have II'(T)| = 2IT(T)R since the two branches T; and T, can be permuted.

This case is handled by yT(x2y?) with the factor of y accounting for the
additional factor of 2 in the group order. Now (3.2) is obtained by
substituting y = 2 in (3.1). O

Using the following lemma which relates the order of the
automorphism group of a free tree to the orders of the automorphism
groups of the vertex and edge-rooted versions of the tree, t(x,2) is expressed
in terms of T(x,2), T(x%,4) and T(x3,8).



Lemma 3.2 For any tree T,

IF(T) = ZIFCTy)I - AT + IT(T3)l (3.3)

Ty T,
where the first sum is taken over all different vertex-rooted versions T, of T
and the second sum is taken over all different edge-rooted versions T, of T.

If T has a symmetry edge, an edge whose vertices are interchanged by some
automorphism of T, then T3 = T. If T does not have a symmetry edge, then

T, is the empty graph and |['(T3)l - 0.

Proof: This lemma is & variation of a lemma due to Otter [HP73]. Asin
the proof Otter's lemma, the vertex and edge-rooted versions of T can be
paired such that the paired vertex and edge-rooted versions of T have the
same automorphism group. Recall that an automorphism of a graph must
leave the root fixed while an automorphism of an edge-rooted graph must
leave the vertices of the root edge fixed. For each vertex v that is not in the
center of T, match the version of T that is rooted at v with the edge-rooted
version that is rooted at the first edge on the path from v to the center of T.

If T has a symmetry edge, the center of T consists of two vertices, say
u and v. Since the edge uv is a symmetry edge of T, rooting T at u is
equivalent to rooting T at v. Hence if the version of T that is rooted at the
vertex v is paired with the version of T that is rooted at the edge uv, then
the difference of the two sums in (3.3) is 0 and T3 - T. Thus, (3.3) holds in
this case.

If T does not have a symmetry edge two cases must be considered. If
the center of T consists of two vertices u and v, match the version of T that is
rooted at v with the version of T that is rooted at the edge uv. In this case
and the case that the center of T consists of just one vertex u, there is one
vertex-rooted version of T that cannot be paired with an edge-rooted
version. This is the tree that results from rooting T at the vertex u which is
in the center of T. Since T does not have a symmetry edge, the vertices in the
center of T are all fixed points of the automorphisms of the unrooted tree T.
Hence this extra vertex-rooted version of T has the same automorphism
group as T and (3.3) holds in this case also. [

This lemma can be extended to a statement about the generating
functions that count symmetries by multiplying (3.3) by x2 and summing
over all trees of the appropriate order. Summing the result over all n 2 |
gives t(x,2) on the left side. The first sum on the right side gives the series
that counts symmetries in rooted trees and the second sum gives the series
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that counts symmetries in edge-rooted trees while [T(T;)ix® sums to the

series that counts symmetries in trees with a symmetry edge. For (1,3)-
trees we have the following functional relation.

Theorem 3.3 The generating function t(x,2) for symmetries in free
(1,3)-trees is given by

1 2 1 32013
1(x,2) = 5 T(x,2) - 3 T(x,2)3 + og T@%4) + 3 T(x338). (3.4)

Proof: First we determine an expression for the series that counts
symmetries in rooted (1,3)-trees. As previously described, this expression
can be found by using planted (1,3)-trees to build rooted (1,3)-trees. The
series for rooted (1,3)-trees is equal to

T(22)+ 3 1038) + [ 21624 T02) - T3 8)]

55 a2’ 31620 102+ 2 T8 (35)

Symmetries in rooted (1,3)-trees in which the root has degree 1, ie, in
planted (1,3)-trees are counted by T(x,2). To count symmetries in rooted
(1,3)-trees in which the root has degree 3, three cases must be considered.
Suppose T is the rooted tree formed from the planted (1,3)-trees Ty, T, and
T;. The second term of (3.5) counts symmetries in the case that all three
trees are the same. The case that exactly two of the three trees are the same
and the case that all three are different are handled by the first and second
bracketed terms of (3.5) respectively.

A tree rooted at an edge can be formed by identifying the edges
incident to the roots of two planted trees. That edge is the root edge of the
edge-rooted tree. When the two trees which are combined are the same,
that edge is a symmetry edge. Thus,

L (Ta,2)2 + T(a2,4)) (36)
counts symmetries in edge-rooted (1,3)-trees and
%T(xz,-i) (3.7)

counts symmetries in (1,3)-trees that have a symmetry edge. Combining
(3.5). (3.6) and (3.7) as in lemma 3.2 and using the functional relation (3.2)
to simplify gives equation (3.4). O



4. Recurrence Relations

From the functional equation (3.1) recurrence relations for Ty ., the

coefficient of y®x2 in T(x,y) can now be determined. Note that throughout
this section the subscripts on the variables are always non-negative integers.
Otherwise one can assume the value of the variable is zero.

The only planted (1,3)-tree with the identity group as its
automorphism group occurs when n = 1. Otherwise, there is at least one pair
of end vertices that can be permuted. Thus, Tg; -1 and Ty, =0if n 2 2,
Forns2and | < m < n-, Ty, the number of planted (1,3)-trees on 2n

vertices (binary trees on 2n-1 vertices) with 2™ symmetries is as follows:

0,if m=n-1
1
Tma=Tm-1/20/2 "3 Tmr2n/2* (4.1)
l n'l
Ekz 2Tix Tmeing fm=n-l
=1i

" Recall that S, is the coefficient of x2 in T(x,2) and let B, and C; be the
coefficients of x22 and x32 in T(x2,4) and T(x3,8) respectively. Then as a
consequence of equation (3.4), s,, the coefficient of x? in t(x,2), can be
expressed in terms of S, B, and C;,. Forn 22,

n-1n-i 3 13

1
3277 25650173 2 2588n-ije1 * 2 Baen2* 3 Chaerys (42)

Let T, be the number of planted (1,3)-trees on 2n vertices (binary
trees on 2n-1 vertices) and let t, be the number of free (1,3)-trees on 2n
vertices. Then equations for T, and t, [BaKP81] can be combined with (4.1)

and (4.2) respectively to give formulas for the expected number of
symmetries in these trees. That is, the expected number of symmetries in a
planted (1,3)-tree on 2n vertices (binary tree on 2n-1 vertices) is S,/T, and

the expected number of symmetries in a free (1,3)-tree on 2n vertices is
85/t



5. Numerical Results

Values of Ty, 5, S, and s, were computed using the CDC Cyber 750 in
the Computer Laboratory at Michigan State University. The computation of
these numbers was limited by the available accuracy and storage
restrictions. Another limiting factor was the time required to compute the
values using the recurrence relations. In the case of (1,3)-trees, the Fortran
programs used to compute S, for n < 50 took 52 seconds while an additional
300 seconds were required to compute Sgg. Table | contains values of Ty o
for n=6 to 13. Table 2 contains values of S, and s, for n=6 to 25.

Table 1. Coefficients of T(x,y) for Planted (1,3)-trees

o m Tmn n m Tmn
6 1 1 11 1 1
2 2 2 16
3 2 3 50
4 1 4 58
5 54
7 1 1 6 17
2 4 7 8
3 3 8 3
4 3
8 1 1 12 1 1
2 6 2 20
3 7 3 85
4 7 4 119
5 1 5 126
6 0 6 61
7 1 7 27
8 9
9 1 1 9 2
2 9 10 1
3 14
4 14
5 6
6 1
7 1
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- Table 2. Coefficients of T(x,2) and t(x,2) for (1,3)-trees o
0 Sa Sn
6 R2%UT 24 (Y200
7 90 168
8 354 240
9 758 608
10 2290 920
11 6002 5680
2 18410 6104
13 51310 18416
14 154106 43008
5 449322 148152
16 1384962 325608
17 4089174 980840
8 12475362 2421096
19 37746786 7336488
20 116037642 19769312

) 21 355367310 58192608

- 22 1097869386 164776248
23 3393063162 502085760
24 10546081122 1427051544

25 = 32810171382 4261678656

Values of T, and t, and the ratios S,/T, and s,/t, were computed
using the Macintosh II microcomputer. Table 3 contains values of S, /T, the

expected number of symmetries in a planted (1,3)-tree on 2n vertices
(binary tree on 2n-1 vertices), and s,/t,, the expected number of
symmetries in a free (1,3)-tree on 2n vertices, for n=6 to 25.

-
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Table 3. Expected Number of Symmetries in Planted and Free (1,3)-trees

i} Planted Free
6 7.000 12.000
7 8.182 42.000
8 15.391 40.000
9 16.478 55.273
10 23.367 51.111
11 28.995 153.514
12 40.820 92.485
13 52.197 136.415
14 70.723 162.294
15 92.644 268.391
16 127.002 287.640
17 166.017 406.988
18 222731 474911
19 295.100 665.743
20 395.295 829.041
21 525.569 1114.097
22 702.244 1435.383
23 935.721 1973.833
24 1250.072 2522.478
25 1667.160 3367.375
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