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The paper deals with tournaments (i.e., with trichotomic relations) and their homo-
morphisms. The study of tournamenis by means of their homomorphisms i3 natural as
tournaments are algebras of a special kind. We prove (1) theorems which relute com-
binatcorial and algebraic notions (e.g., the score of a tournament and the monoid of its
endomorphisms); {2) theorems concerned with strictly algebraic aspects of tournaments
(e.g., characterizing the lattice of congruences of a tcurnament). Qur main result is that
the group of automorphisms and the lattice of congruences cf a tournament are in gen-
eral independent. In the last part of the paper we give some examples and applications to
other fields.

0 Introduction

The program of systematic study of algebraic properties of graphs
and relations in general was carried out by K. Culik, G. Sabidussi,
Z. Hedriin and A. Pultr. While this approach led undoubtedly to success
in applications of graph theory o various branches of mathematics (see
[5]), within graph theory itself the roie of this approach is still debatable
and arguments can be given to support both sides. Certainly, there are
parts of graph theory where the study of properties of graphs by means
of homomorphisms between them is generaliy known (e.g., chromatic
numbers and polynomials). But this being more the e¢xception than the
rule, it is not very surprising that there are graphs — namely tourna-
ments — which are basically the same as algebras of a certain kind, but
which have not yet been studie.: from this point of view. As far as we
know, [ i] is the only paper dealing with the subject, apart from the
work done on automorphism groups of tournaments, see [8]. In 1965,

* This paper contains some of the results obtained in the seminar on graph theory 1970-71 at
Charles University, Prague, under the guidance of Z. Hedrlin and the second author.
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Z. Hedrlin obseived that a tournament 9= (T, f) can be made into an
algebra A, =(T, ) by definingx- y =y -x=x e (x, y) € ¢. This cor-
respondence between the class of ~ll tournaments and the class of all
commutative groupoids (X, -) satisfyingx -y € {x, y} forallx, y € X, is
clearly a bijectio’s. A moment of reflexion is enough to check that the
tournament-homomorphisms and the algebraic homoraorphisms are also
in 1 -1 correspondence and actually coincide. It is the aim of this paper
to go on in this direction and to study tournaments in an algebraic way
(i.e., by means of “iomomorphisms between them).

The paper is divided into five parts. In Section 1 we state the basic
definitions and theorems or, the structure of homomorphisms and con-
gruences of tournaments ‘we relate them to some of the known results.
In Szction 2 we prove - theorem which shows the independence of the
degree sequence (score vector) and the endomorphisms of tournaments,
inideed, we prove that given 2 stiong tournament there is a tournament
with the same degree sequence every endomorphism of which is either
a coustant or an automorphism: these tournaments are called simple.
We also stow that the absence of non-trivial automorphisms may be
forced by the degree sequence, and we discuss this in detail in Section 5,
where the corre ponding characterization theorems are proved. In
Section 3 we characterize all finite lattices which are isomorphic to the
lattice of all congruences of a tournament; such lattices we call admis-
sible. Investigating the simp!c tournaments in Section 4 we are able to
prove:

Main Theorem. Let L be an admissible lattice, G an odd group. Then
there exists a tournament I such that

(1} the group of all automorphisms of T is isomorphic to G;

(2) the lattice of all congruences of * is lattice-isomorphic .0 L.

A few applications, remarks and open problems cenclude the paper.
Those not interested in tournaments can read only this last paragraph.

What are the advantages of this approach? Tournament-homomor-
phisms are sirongly related to the inner structure of the underlying
tournaments. Since every su-jective homomorphism is a retraction, the
use of a homomorphism: permits the reduction of a tournament to
ancther, hopefully simpler one. At any rate, we decrease the number of
vertices. This is often done intuitively in practive (blocks of a league,
small groups in sociology). On the other hand, a homomorphism con-
stitutes in itself a type of lexicographic decomposition of a tournament.
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It is possible to say that the cyclic decomposition of non-strong tour-
naments and the simple decomposition of strong tournaments are the
two tools for reduction of tournaments. The formulas in Section S can
then be regarded as giving the number of essentially different non-iso-
morphic tournaments with n vertices.

Our Main Theorem gives a sharpening of a result of Moon [8] on the
automorphism group of a tournament. On the other hand, it is an ex-
ample of a type of theorem considered in universal algebra. Only re-
cently, Lampe [ 7] proved that for universal algebras the congruence
lattice and the group of automorphisms are independent. This is very
difficult even in the class of all universal algebras, and Lampe proved it
using mainly unary operations. For a restricted class of tournaments
and the corresponding algebras our theorem gives the best result. All the
tournaments considered here are finite, although many of the results
can easily be generalized to the infinite case.

FEemark: Recently, simple tournaments were studied in a different
context by Erdos, Fried, Hajnal, Milner and Moon [ 2]. One of their
main theorems states that (with one exception) every tournament ¥ can
be extended to a simple tournament & by adding one vertex oniy.

The authors are indebted to Prof. G. Sabidussi for valuable suggestions
during the final preparation of this paper.

1. Basic definitions and properties

A tournament 7= (T, ¢) is a finite set T with arelationtC TX T
which is reflexive and satisfies (x, y) € t « (», x) & ¢ for any two distinct
vertices x, y of T.

Let 7=(T, t) and J= (S, 5) be tournaments. A mappingf: 7'+ S'is
called a homomorphism if (f(x), f(»)) € s whenever (x, y) € ¢. In an
obvious sense we use the terms endomorphism, automorphism, isomoi-
phism. Denote the set of all homomorphisms from 7 into & by A(7,d).
We put H(7) = H(7, 7). This is obviously a monoid under composition
of mappings. We denote by 47F) the group-part of H(7) which consists
exactly of all 1—1 homomorphisms (as 7 is finite).

If a tournament d is a subtournament of 7, we write d < 7. Since
every constant mapping is a homomorphism we have H(7, ) # @ for
any two tournaments. There are tournaments for which the constants
are the oni. endomorphisms (see Section 2 and [1]). On the other
hand, if f € H(F, d) and f is onto, then J can be regarded ac a subtour-



40 V. Miiller et al./Either tournamenis or algebras?

nament of 7 (it is enough to take any set M of representatives of the
family { £~ 1(x): x € S}, and to show that the subtournamei:t of 7 gen-
erated by M is isomorphic to S). Consequently, we have that every epi-
morphism is a retraction (see [6]). We shall use the notation 71y, for the
subtournament generated by M, i.e., Ty =(M, t N M X M),

The algebra A, of a tournament 7 is the set T together with the binary
operation on T defined by x - y =y - x = x iff (x, y) & . We state explic-
itly:

Proposition 1. f€ H(Y,S) iff f is an algebraic homomorphism from Aq
into A,.

Hence from the homomorphical point of view we can regard a tour-
nameni either as a relation or as an algebra; we shall frequently make use
of this possibility. In particular, an equivalence n on the set T is a con-
gruence on a tournament Jiff (x, y) € t = (x’, y) € t whenever x nx'.
Denote by 7 /n the factor tournament under the congruence 7. Every set
mixl= {y:xny}is called a congruence class. Denote by (E(7), A, v)
the lattice of all congruences of 9. The following is, of course, true for
the congruence lattice of any algebra:

Praposition 2. Let 0y, n, be congruences on 7. Then n; A ny is the inter-
section of 1y and M, ; Ny v N, is the smallest equivalence containing n,
and ﬂz.

We list some other simple properties.

Proposition 3. Let T be a tournament, M and N congruence classes of 7.
Then the following holds:

(W&, »)etiff(X'. yYetforanyx,x’ €M y, y' €N,

(ZIMN N+ Q=+ MU N isa congruence class.

Tournaments with the simplest congruence lattice are of a special im-
portance: A tournament 7 is called simple if E(T)={0, 1}. Cleariy, for
a simple tournament the only congruences are T2 and Ay (the diagonal
onT).

Propesition 4. Let T be a tournament. Then the foliowing statemeints are
equivalent:
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(1) Tis simple.

(D IH(Z, ) =S| forevery $="55)E 9.

(3) For any proper subset M of T there exists z € T — M such that
neither {z}Y X MC tnorM X {z} C ¢

A sequence (x;, ..., x, ) of vertices of 7 is called a cycle in 7 if
xpxpppEi=1 ., n-1,and (x,, x;)€ . If T={x,,.., x,} and
(xy..... xp)isacycle in 7, then 7 is called a strong tournament provided
that 7 has at least two vertices.

Proposition S. Let & be a iournament. Then there exists a simple tour-
nament S with at least two vertices which is a homaemorphic image of
. & is unique up to isomorphism. If 7 is a strong tournament, then
there exists a unique congruence non 7 such that Y/n=4.

Proof. If T is not a strong tournament, then &= ({0, 1},<). Let Tbe a
strong tournament. Let

n=Vin:n € E@),n+ T?}.

We claim n # T2. Suppose the contrary, then for any two distinct
points x, y there are congruence classes My, ..., M, such that x € M,
YEM, andM,N"M;,, #0,i=1, .. n—1. Itiseasy to see that this
yields a contradiction. 7/n is a simple tournament as every congruence
€ on T/ induces a congruence on 7. Clearly, if I/n= 9/n, then
I/nvn' = T/n, and hence n =7’ (again we have nvn’ # T2).

The maximal non-trivial congruence on a strong tournament will be
called the simple decomposition of a tournament.

Proposition 6. Let  be a congruence on 9 such that ihere is 10 con-
gruence € with Ay < e < n (i.e, nisanatom of E(T}\. Ther. n has only
one congruence class containing at least two points, and this congruence
class determines a simple subtournament of J.

Let us a:dd one remark concerning our definition of homomorphism.
n [4] a hcmomorphism is defiiied as a finite composition of *‘zlementary”
homomorpiisms, where the latter arc those homomorphisms (according
to our defin tion) which ideniify exactly two points. Of course, in the
case of und rected graphs which are finite (and only for those) both
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definitions coincide. But for certain relations these two definitions do
not coincide even in the finite case: every simple tournament with at
least three points provides such an example.

2. Homomeorphisms and cycles in tournaments

Homomorphisms are related to the cycles in tournaments. it is easy
to see tha: a tournament 7 is not strong iff there is a homoemorphism
from 7 onto 7, (denote by 9, = (T, t,) the natural ordering of the
natural numbers 1. ..., #). More generally the following holds:

Proposition 7. Tis a strong tournament iff f (7) is a strong tournament
for some homomorphism f. where f(¥)= (£ (T), f3(1)) is the homo-
morphic image of 7.

Proof. If f(T) =d = (S, 5) is not strong, then 7 fails to be a strong tour-
nament also. ‘

Let g be a homomorphism from 7 onto 7,, and suppose that f(7) is
a strong tournament. Put M =g~1(1) and N =g~ 1(2). Then f(M) N f(N)
# @ for otherwise g can be factorized through f, and f(7) is not strong.
Let f(x)=j(p) € f(M) n f(N). Let { f(x), f(2)) € s, f(2) # f(x). Then
2 € N, for otherwise f{x) = f(z). Similarly, y" € M for every (f(¥'), f(x))
€ s, (Y # f(x). As f(T) is strong this finishes the proof.

Let d™ {x, 7) be the cardinality of the s2t
Vitx, D={y:(x,y)E L x+)}.

We put d*(x, 7) = |V*(x, )|, where
Vx, 9)=T - ({x}u V(x,9)).

Tournaments 7 and d are said to be degree-equivalent if the sequences
{d (x.T).xe€ Tyand (d(x, $): x € §) coincide (in a convenient enu-
merz tion of the vertices).

By the reversal theorem, see {8], two tournaments 7 and d are degree-
equivalent iff 7 can be transformed into d by *“chasing triangles”. Con-
sequently, if 7 and & are degree-equivalent, then either both 7 and & are
strorg, or both 7 and dJ fail to be strong. Thus together with Proposition
7 we have a restriction on the degrees of homomorphic images of a tour-
nament. In particular,
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Zd (. 9):i=1, ., k=% k<ITi,

iff there exist m < | f(T)|, vertices vy, ..., ¥,, of f(7) such that

m
2 d=(y fTN=(D.
i=1

Now we show that this restriction on the degrees of a homomorphic
image is best possible:

Theorem 1. Let T = (T, t) be c strong tournament, \T | + 4. Then there
exists a simple tournament $= (T, s) such that T and & are degree-equi-
velent.

in the proof we einploy the following notation: Let I=(T, i) be a
tournament, let (q,, ..., a; ) be acycle in 7. Denote by (a,, ..., ;)7 the
tournament which arises from 7 by reversing all arrows in the cycle
@y, .... ag) i.e., (ay, ..., 4 )T = (T, 1), where

t = (t\({(d,, a,+1) i= 19 ---,k - l} U {(aku al )}))

U {(d”-.‘.l, a,-): i=1,.,k-1}u {(al,ak )} .

Proof. The case |7] = 3 can be handled easily.

Let |1T| =5 and let n be the simple decomposition of 7. if 7 fails to
be simple, then necessarily | 9/n| = 3, and we may suppose that one of
the following possibilities occurs:

() n={{1, 2, 3}, {4}, {51},

(id) 7 = {{1, 2}, {3, 4}, {S}}.

In case (i), it may be further assumed that

{(5’ l)" (l’ 4)1 (4’ 5)} ct and {€ ! > 2): (2s 3)} cr.
But then (2, 4, 5) 9 is siraple. In case (ii), we may assume that
{(5,1),11,3),(3,5),(1,2),3.4)} C ¢,

and thicn (2, 4, §) T is simple.
For |7} > 5 the statement will be proved by induction on {7 |.
LetiT| =k + 1. As T is strong, there exists a € T such that Tly_g, is
again a strong tournament. By the induction hypothesis there exists a
tournament d= (T — {a}, s) which is degree-equivalent to 7|7_ (,). Put
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F=sui{a} X TNn)u(TX {a} Nnt),

then the tournament ' = (T, t') is obviously degree-equivalent to 7. If
7’ is simple, the statement follows. If 7° is not simple, let  be the
sitnple decomposition. But then necessarily n = Ar U {a, b}, where we
can assume (a, b) € ¢'. As &is a strong tournament there are vertices
c.d€ T - {a b} such that

{(d. a),(d, b),(a c)(bc)(cd)cCt.

Put J, = (0, ¢, )T and Ty = (b, c, d)T'. Then the following statements
hold.
(1) There is no non-trivial n € £(9,) (n € E(T}), respectively) such
that N {a, ¢, d}? QAT (nn{b.c d}? ¢ Ar, respectively).
(2) If K is a congruence class of 9,( 9}, respectively), containing a
(b, respectively), then | K| < 2.
(3) If K; # K, are non-trivial congruence classes of 7, ( 7}, respec-
tivelyj, then there does not hold:
(i}Ce Kl’ de Kzl
(iae K, c€ K, (b€ K,, d < K,, respectively).
(4) If K, is a non-trivial congruence class of 7, (7, respectively),
and eitherd€ Ky orc€ K,, then also b € K| (a € K,).
If eitter I, or J}, is simple, the statement follows If both 7, and T
are not simple, iet 9, {n;, respectively) be the simple: decomposition of
T, ( Ty, respectively).

By (1)—-(4), the list of all possibilities for n, and 7, is then as follows
{(where e is an element distinct from q, b, ¢, d):

la: n,=Apu (b d)?, Ib: ny=AruU{a c}?,
lla: n,=Ayu{bdi?u{a e}, lIb: ny,=AruU{a cl2U{b e}2,
IMa: 7n,=ArUKX K |KI>23, IIIb: ny=ArULXL,|LI>3,

KcT-{ac, LcT-{bd},
IVa: nm,=8; U KX KU{a e}2, IVb: n,=Apr=LX LU({b, e}%,
IKi=23,KC T—{a,c, e}, ILl=23,LCcT-{bd e},
Va: n,= Ay U {q c}?, Vb: n,=ArU (b €}2.

We prove that one of the cases Va, Vb must occur, and that either
of them implies that 9’ can be reVersed in a simple tournament. For
example, consider the case Va: either (¢, ¢,a, dYor (c,a, e, d) is a cycle
in 7. Put(c,a e d)7, = 9,. Suppose by way of contradi:tion that
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7, is not simple. Let K, | K| > 2, be a congruence class of 7,. Then
(i) T3l{a,b,c,d,¢} is simple.
(i)IKn{a cdel<,be Kk,

(iil)a ¢ K.

The proof of (i) is a matter of routine. To establish the other tvio claims
it is enough to prove the impossibility of K N {¢, d, e} # (. Choose

fe K- {a b, c d, e} (recall that |T| > 5). Then either {(f, a}, ( £, b)}
ctyor{(a f), (b f) € t;, and also either {(f,a), (f,e)} £ ¢, or

{{a. 1), (e, )} € t; which is a contradiction with K N {e, ¢, d} # Q.
Clearly also

(v) K= 2.

Since (£, b, ¢) is a cycle, it is enough to prove that (f, b, )T, is
simple. But this is now routine as every congruence class would contain
f as well as some of the pointsa, b, ¢, d, e, but between these points we
have constructed enough 3-cycles. The case Vb can be handled sym-
metrically.

Now we prove that the only possible cases are Va and Vb. As the si-
tuation is symmetrical in a and b it suffices to prove the impossibility
of the joint cases.

(1) laand 1b, (2) laand Ilb, (3) Iaand IIib,

(4) laand IVb, (5) Haand Iib, (6) Ila and IIb,

(7) Ilaand IVDb, (8) IIIa and IIIb, (9) IlIa and IVD,
(10) IVa and IVb.

The cases (1), (2), ..., (7) are almost self-evident.

Case (8): If follows easily that K — {b,d} =L — {a, c}, and conse-
quently K = {e} by the simplicity of . Let f€ T - {a, b, ¢, d, e}. Then
(f, b) € t, implies (f, a) € t,, and consequently (f. x) € ¢, for every
x € {a, b, ¢, d e}. This is a contradiction.

Case (9): Again K - {b,d}=L — {a,c}={f}. Then (f e) € t,. hence
(f, d) € t,, and this is a contradiction. ( 10) may be proved in the same
way. This finally proves Theorem 1.

According to Theorem ! there arc many simple tournaments and
their number on a sct of cardinality £ is increasing with k. But in this
respect Theorem 1 is not of much use, for it can be shown much more
easily that lim,,_, . S(n)/T(n) = 1, where S(n) is the number of non-
isomorphic simple tournaments and 7T'(n) the total number of non-iso-
morphic tournaments on a set with n points (see Section 5).
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Theorem 1 can be used for the construction of rigid tournaments. A
tournament is said to be riyid if the constants and the identity mapping
are its only endomorphisms. It is proved in [1] that on every set M,

IM| > 4, there exists a rigid tournament. Since there exists a degree se-
quence dy, ..., d,, of a strong tournament such that every tournament 7
with the same degree sequence possesses no non-identity automorphism
(one such sequence is 2, 2, 3, 4, ..., n—2, where n > 4), we get as a corol-
lary the result of [1]. See Section § for further results in this direction.
There vie characterize those degree sequences which simultaneously
force simplicity and the identity as the only automorphism.

If a tournamernt fails to be strong, then the simple decomposition is
not unique. There is another natural “'reduction” — into cyclic parts.
This may be formulated as follows (see [8]):

Proposition 8. Let T be a non-strong tournament. Let f be a homomor-
phism from 7 onto 7, such that there is no homomorphism from &
onto 7, forany m> n. Then [ is determined uniqguely, and Tip-1(e) I8
a strong tournament for every x € J,,.

The partition { f ~1(x): 1 € x < n} is called the cyclic decomposition
of 7. Of course, the cyclic decomposition of a tournament 7 is a con-
grueice, but it is not a maximal one (with the exception of cyclic de-
compositions with exactly two elements).

3. Characterization of the lattice of all congruences of a tournament

Let (L, A, v) be a finite lattice. Denote by 7(£.) the set of all join-
irreducible elements of L (i.e., the set of all the elements x € L for which
x # ¥{y: y < x};as usual, we take the least element of L as the join of
the empty s¢t). Consider the set /(L) zndowed with the partial ordering
rtduced by L. Dencte I(E(T)) by I(7) for a tournament 7. We shall split
the proof of the main theorem of this paragraph into two parts:

A: The characterization of I(7);

B: The characterization of 7(9) in E(7).

A i(T)

First, we list a few lemmas which will be needed in the sequel.
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Lemma 1. Let 9 =(T, ) be a tournament. M S T. Then M 0 M isa con-
gruence class in ‘7[ m Jor any congruence class N of 9.

Lemma 2. Let T = (T, t) be a tournament, let US T be a cong: uznce
class in 9. Then any congruence class V of %7{ v is also a congr rence
classin T

Lemma 3. Let T=(T, t) be a tournament, let M, N be congruexce classes
of T such thatM ~-N# Q, N~ M#Q, and M 0 N+# @. Then 1he tour-
nament 7| is not strong.

Proof. Chocose xe M — N, yem n N, z€ N -~ M, and suppose, for ex-
ample, (x,y)€t. Then(x,z)e tand (x".z)€ t forany x' e M - N, and
consequently (x", )€ tforanyx’ €M - Nand )y e M n N.

Lemma 4. Let T == (T, t) be a tournarent whose cycle decomposition
contains exactly two strong tournaments Cy, C,. Let M be a congru-
ence class such that M C; # Q. i=1,2. Then M =T.

Proof. We proof M 2 C;. Suppose that, on the contrary, C; — M # (. As
(', is a congruenc: class. it tollows by Lemma 3 that C; is not strong.
Since T=C, U C,, we have M =T.

Proposition 9. Let T= (T, t) be a tournament. Then the f’)llowmg two
stateme:its are equivalent:

(DNpe 9);

@Qp=KX KU Ay foraset K& T, |K|2 2, and the cycle decom-
position of T|g has at most two elements.

Proof. (1) = (2).
(a) o has only one non-trivial congruence class, for otherwisc

p= {K,X K!' U A'FI (=1, .., k},
where K;, ! : 1, ..., k, k 2 2, are congruence classes of p
(b) If + has only one non-trivial congruence class X, and €7i x has the

cycle decomposition Cy, ..., €, for a k > 3, then we get again a contra-
diction with the irreducibility

2= [(CyU U Arlv(C,U C3U ..U G )P U Agl] .
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(2)= (1).
(a) First, suppose that 7 E x is a strong tournament. Then

V{OEI:‘:T)U‘;KX Ku AT}‘.'T?UAT¢KX KUZ&T,

where 5 is the maximal congruence on the tournament 7 i,;.
(b) Secondly, suppose the cyclic decomposition of 7 [ g contains ex-
actly two strong tournaments C; and C,. But then

VIOEET) 0SKX KUAP}=CiX CEUC, X CoUAp# p

(see Lemma 4).

Definition. Let O = (X, <) be a partial ordering. Define n(0) = (X, n(<))
by (x, v} € (<) iff x < y, and there exists noz € X such that x <z <y
(i.c., iff v covers X ). We put (x, y) € n(9) if x, y € I(7) and (x, y) € n(0)
for the partial ordering O = (1(9), 2).

Lemma $. Given a rournament 7=(T, t), let M, N, P, € I(7) be mutually
distinct {this is to be understood in the sense that M, N, P are strong con-
gruence ciasses corresponding to three irreducible congruences of 7, see
Proposition 9) and suppose that (M, P) € n(7) and (N, P) € n(T). Then
T | s 5 has the cycle decomposition Cy, Cy, Cy, where Cy = P,
CiuCy=M and C, U C3=N.

Proof. It follows from the definition that M N N 2 P3 Q and M ;Q N,

N 2 M. It follows from Lemma 3 that 7 |a# is not a strong tournament,
and since M is an irveducible congruence class, the cyclic decomposition
of T|u consists of exactly two parts Cj, C;. Similarly, one cin prove
that the cyclic decomposition of 9]y has precisely two parts C; and Cy.
If follows by Lemma 4 that we may assume P N C; = @, and hence

P < C5: similarly, we may take P& C3. Hence C, is an irreducible con-
gruence class, M 2 C; 22 P and (M, P) € n(9), so that C; = P. It follows
in the same way thut Cy = P. The rest of the statement is clear.

Quite analogously one can prove:
Lemma 6. Let MNe (T M-N#=Q+N-M MnN#*Q Then

T lpex v has the cycle decomposition Cy, Cy, Cy, and M = C, U C,,
N= Cz U Cg.
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Let O = (X, 2) be a partially ordzred set. Put
max(@)={yeX: v x=»x =y},
max" Y (0)={y € X: y < x = x € mex(0)} - max(0) .
We can now prove:
Theorem A. Let O = (X, =) be a partially ordered set. Then O is iso-

morphic to (I(7), 2) for a tournament 7 iff
(A1) n(0) does not contain the following subgraphs:

OO ST T TR
VoINSV \M&

for every n > 1 (arrows lead from smaller to bigger elements).

(A2) The partial ordering induced on max(0) U max~1(0) by < is
isomorphic either to the graph T, or to a graph which arises from it by
deletion of some of the lower vertices.

//\/\

nx1

Proof. 1. Necessity:

(1.a) Let 7=(T. ¢) be a tournament such that there are
M N, P, Qc I(7) with (M. Q)€ n(7), (N, Q)¢ n(T), (P, )€ a(T). Ac-
cording to Lemma 5 there are strong subtournaments C, C,, (5, (
suchthat 0=C, M=CU } N=CU (,, P=CU (3. Choose x € C
x;€ G, i=1, 2, 3. But then (x,, x) € ¢ implies (x, x5 ) € ¢ and
(x, x3) € ¢, which is a contradiction against Lemma 5 used for the iriple
N P Q.

(1.b) Let 7 = (T, ¢) be a tournament which violates (1.a): there zre



30 V. Miiller et al. [Either rournaments or algebras?

P, Q. R, M, N € I(9) such that {(# M), (Q. M), (R, M), (R, N)} C n(7).
By Lemma 5. there are strong subtournaments Cy, C,, C3 such that
M=C,v(Cy,N=Cy U (; and R = C,, and these unions are cyclic de-
compositions. We prove P € C}; according to the definition of n(J), it
is impossible that PS . Butif PN C; # 9,i= 1, 2, then by Lemma 4,
P = M. Hence necessarily P & C;. As C; determines an irreducible con-
gruence, we have P = C; by the definition of n(¥). Quite analogously it
can be proved that Q@ = C; = P. This is a contradiction.
(1.c) Let <r= (T, ¢) be again a tournament with the following proper-
tics: there are M, N, O, P, Q € I(7) such that {(M, P),(N, P),(0, ),
(P, )} < n(7). Using Lemma S for the triple M, N, P, we get that Tlp is
a strong tournament, while by applying the same lemma to the triple 0,
P, Q we obtain that T, fails to be a strong tournament, a contradiction.
(1.d) Let 7:=(T, ) be a tournament with irreducible congruences
P, M!‘ 1”2. Nl' Nz such that {(Myl,P),; (NI,P), (Mz, Ml), (1\1‘2, Nl,} C n(ff}
By Lemma $, there are strong subtournaments C;, C,, C3 such that
Ni=C,uCy, My =Cy uCy, P=Cy. We prove Ny N C3 # (. Assume
Ny nCy =0.Fixx3 € C3, x€ N,, lete.g. (x,x3) € t. By Lemma 2, (3
is a congruence clase in 7 and hence (x', x3) € ¢ for every x’ € N,.
Choose vy € C|, v, € C,, y3 € Ny — N arbitrarily. AsM,, N, are con-
gruence classes, (v3, x3) € t, we get (3, ¥1) € t and (y3, ¥,) € t. Con-
sequently, (y;. v,) € . Asy,, y,, y3 were arbitrarily chosen, €75 N, hias
at least three components in its cyclic decomposition, viz., C,, C;,
Ny — N, . This is a contradiction (Proposition 9).
(F. @)} € n( ). Using Lemme 5 for the triple M, NV, P, we ge that T p
is a strong tournament, while by applying the same lemma to the triple
O, P, @ we obtain that T p fails to be a strong tournament, a contradic-
tion.

(N3. Ky) e n(9),
(K,—.K,-H)Gn(q), f-:‘-l,...,k—-l,
(K. My)e n(7).

Then nzcessarily K =M, (by (1.c)), hence M, & N,. Using the same
argument for M,, C,, we get My S N,, a contradiction.

(l.e} Let I=(T t) be a tournament which violates (1.e): there are
My, .., M, and Ny, ..., N, € I(T) such that (M,, N;) € n(7} and
(Mo NyE U Tyfori= 1, ..., n, n 2 2 (the subscripts are taken mod n).
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By a subsequent application of Lemma 5, we get that there are strong
subtournaments Cy, ..., C, suzh that N; = C; and My, = C; U Cp 4y,
i =1, ..., n, and these unions are the cycle decompositions 2f M,. Choose
%€ Cyi=1,.,nand etx,, x;) € t. AsM;, ..., M, are corgruence
classes, we get (xy, x;) € ¢, i = 2, .., n. But by Lemma 5, we liave
{(x9, x3),(x3,x4), ..., (x5, X1 )} & 1, a contradiction.

(2) Let imax(/(9), 2)1 = 2. Then T2 & /(9), and hence Tisnot a
strong tournament. Let Cy, ..., C,, be the cycle decomposition of 7.
Then

{CiUCiypii= 1, ., n—1}=max(/(7),=2),
{Cii=1,..,n |Cil> 2} =max~1((9),2).

Hence we obtain condition (A 2) (here we delete a vertex in max~}(/(9),
2) whenever C; is the trivial tournament).

I1. Sufficiency:
Let O = (X, 2) be a partial ordering satisfyiny (A1), (A2).

G, =max(0), G, =max"'(0),

i-1 |
Gi={xeX- ]gl G;: there exists y € G; _ and (, x) € n(0)} ,

\ ’

k(O) = max {i: G; # @} .

We prove the statement by induction on £(Q).

If k(0) =1, then O ~ (I(9), 2) for the tournament 7 = (T, ), where
ITI=1G,1+1,and t is achain on T. If |G, | = 1, then also very simple
tournament represents 0.

Supposing that the statement holds for every O with k(G) < &k — |,
we prove it for k.

(a) Let |G| = 1. Define the relation € on G, by: (x, y) € € « there
exists z € G3, (x, z) € n(0) and (y, z) € n(0). Let € be the smallest
equivalence on &, containing €, and [x) the é-equivalence class con-
taining x. Put

[¥x]-{ye€ X:z> y forsomez € [x]}.

Then every partial ovdering ([x], >) satisfies conditions (A1), (A2), and
as k([¥],2) < k — 1, there exists a tournament T such that /(7,), 2)
=~ ([%],2). Let |G, /€1 = n. Let 3= (S, 5) be a simple tournament with
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more than n vertices. Let ¢ : G.,/€ = S be one-one. Put

T= U{T[x] X € 02} uS - ¢(G2/é) .

Define the relation 7 on T {x, y) € ¢ iff either (x, y) € 1, for some
gl <;2'

or
x€ Ty, veTyy, [z]1#[u] and (dlz],¢lu)es,
or
x€ Ty, vesS- ¢(Gyle) and (¢fz},»)€Es,
or
x,y€S - ¢(G4/€) and (x.y)€s.

it is easy to prove that (/{7 2) ~ G and 9= (T, t) is a strong tourna-
ment.

(b) Let |G,1 > 1. Take x, v € G4, x # y. Then {x} N { ¥} = Q. By in-
duction hypothesis there are strong tournaments 7, x € G,, such that
(T, 35 f{%},2). Let A be a set disjoint from G,, |4] =Gl + 1 - |G,l.
Fora € A4 let 7, be the trivial one-point tournament. Choose a total
order < of G, U A, and define the tournament 7= (T, t) with
T=U{T,: xe GyU A} by .etting (x, y) € ¢ iff either x, y € T, and
(x,y)et,orxe€ T, y€T,anda<h. It follows again easily that there
exists an ordering < such that (/(9),2:) =« O (see the proof of the neces-
sity of (A2)).

As a consequence of the abcve proof we obtain:

Corollzry. T is not a strong tournament if imax(0)} = 2. Tis a strong
tournament if imax(0)| = 1 and imax “*(0)| > 2 If Imax{0)| = 1 end
imax~10)| < 2, then T can be chosen both strong or not strong.

B: E(7).

Since all the lattices considered hers are finite, the following iemma
is well known:

Lemma 7. x=V{y € KT): y < x} for every x € E(9).

Lemma 8. Let 7= (T, t) be a tournanzent, p, py, p», ..., pr € KT). If
Vipii=1,.., kY 2 p, there exists an i such ihat p; > p.
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Proof. By way of contradiction let us assume thatp; ¢ p, i = 1, ..., k,
and that o = V{p;: i= 1, ..., k} 2 p. Let p be determined by the congru-
ence class K (Proposition 9). We distinguish two cases.

(a) ET[K is a strong tournament. Let 7 be the simple decomposition
of J|x.Chooseani, 1< i< k. Thenp; n KX K& n, and also
0; S KX Ku (T- K)X (T~ K), for if there exists a congruence class
Lof TwithLNnK#QandL — K+ @+ K — L, then 7|g is not a strong
tournamicnt by Lemma 3. Hence

oS quU(T-K)X(T-K),
and consequently,
0C KX KU AT’

a contradiction.

(b} g is not strong ziid has the cyclic decomposition Cy, C» with
(xy, x2, € tforall x; € Cy, x5 € Cy. As 0 2 p, there are irreducible con-
gruence classes (Proposition 93 Kj, j= 1, ..., n,such that K; N C) # 0,
KinK #9,j=1,..,n~1,and K, N C, # 0. We can further assume
that n i3 the smallest natural number with this properiy. By Lemma 6,
there are disjoint strong subtournaments C;, i = 3, ..., # + 1, such that
Kl = Cﬁ. U C;, Ki«-]i = Cf v C,-,,.", i= 3, ey 1, K'n = Cn«-l U Cn . As C,',
i=1,...,n+1, are irreducible congruence classes we have a contradiction
against Theorem A, (1.e).

Lemma 9. Let 9= (T, t) be a tournament, p € E(T). Then the set M of
irreducible congruences satisfying

(DVie:eeMi=p,

Qe'€e,eeEM=>e €M
is unigquely determined, and M = {e € I(7): € < p}.

This follows directly from Lemma 8.

It is well known that the properties given in Lemma 8 and Lemma 9
are equivalent to the distributivity of the lattice £(J). Thus we finally
have: A

Theorem 3. Let L be a finite lattice. Then the following two statements
are equivalent:

(1)L =~ E(T) for a tournament 7.

(2) L is distributive and 1(9) satisfies conditions (A1) and (A2) (Theo-
rem A).
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The finite distributive lattices satisfving (A1) and (A2) will be called
admissible.

Remark. Condition {A2) shows that ore cannot describe the class of all
congruence lattices of tournaments by giving a list of forbidden sub-
lattices.

4. Tournaments with given group of automorphisms and given lattice
of congruences

In the proof of our main theorem the principal role is played by he
following:

Propasition 10. For any group G of odd order there exists a simple
tournament  such that A(7) 2 G.

We shall prove this using the classical Cayley technique, see e.g. [8].
Let G ={gy. ..., g,} be the given odd group, and let H ={g,, ..., g;} be
a fixzd minim: 1 system of generators of G. Furthermore, fix any total
order € of G.

Define a relational system @ = (G; {R;: i =0, 1, ..., k}) by

R;={(g.88):e€CGIU{(gg)rgeCGl, i=1,.,k,
Ro={(g.h):g"'h>h™1g} U {(g.g): g€ E}.
Then
Rgnﬂf{1=A¢;, R,-FSR,-'-'-'AG fOl’f#"j,
U{R;:i=1,.,k}=GX G,
as czn easily be shown using that G is odd and the definition of R;.
Lemma 10. Dencte by 1/(Q) the monoid of all endomorphisms of the
relational system @ (ie., the mappings G - G preserving simultaneously

all the relations of @ ). Then the group-par? of H(gQ) is isomorphic to G,
and the only endomorphisms which are not automorphisms are constants.

Proof. The statement about automorphisms is proved in [§].
Let F be an endomorphiem of ¢ for which F(G) # G. We show that
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if F is non-constant, then it is one-one (iand hence belongs to the group-
part of H(G}). Suppose F(g) = F(g') # F(I). If (F(g), F(h)) € R; for
some i > 0, then (g, h) € R;, (g', h) € R;. Since each R;, i > 0, is a one-
one mapping G - G, we have g = g'. Similarly, we can handle the case
(F(h),F(g))ER;, i> 0.

Since gy, ..., g; are generators, for every f€ G, F(f) # F(g), there is
a sequence gy, ---» 8i(py of elements of H with

-1 -1
(8. 8i(1)) € Riiy Y Ridy - (8i(p- 1) 8ip) € Rigp-1)Y Rigp-1),
-1
(gi(p)- ,f) € RI(P) U Ri(p-) .

This proves the lemma.

Proof of Propositicn 10. Let G be an odd group. Let @ = (G:
{R;:i= 0,1, ..., k}) be the relational system from Lemma 10. Let
I =(T, ), i=0, ..., k, be fixed rigid tournaments such that 2|G| < |7},
and {13] < |T;i whenever i < j. Foreach i =0, ..., k, choose a vertex
a; 33 Tt'
Defir.e the tournament J = (§, s5) as follows:

S=GU{R; X T;:i=0,...,k}, whereR;=R\4A, .

For the definition of the relation s we consider five cases:
() slgxg =U{R;:i=0,1,.., k}.

(ii)a€eR; X T, beR; X T; i# ], then(q b)€siff i <j.

(ii)a, beE R; X T, a=((x,p),¢). b=((x",y"),c'). Then a, b € s iff
eitherx #x', (x,x)Yesorx=x", vy, (yy)esorx=x",y=y,
(c.c')E ;.

(iviae G do=((y,2),c0)ER; X T, ac {y, z}. Then (a, 0) € s iff
either y =a, - # a; orz = a, ¢ = a;; (b, a) €5 iff eithery =a, ¢ = a; or
z=a, c# a.

(V) a€G b=((y,z),c)eR; X T, ae& {y, z}. Then(a, b) € s iff
(a z)€s.

First, we prove that d is a simple tournament. In the following. let
M, with |M| > 1, be a congruence class on &, M # S.

(M IM N ((x, y) X THI < 1 forevery i and (x, y) € 5. For if
IM O ((x, »)X T > 1, then M D {ix, y) X T;} U {x, y} as T, iz simple
and because of (iv). Moreover, thers exists ana € (x, ¥') X T; 0 (§\M);
otherwise S = M. Now if there exists ((x, y'), b) € M, then

(& y)b}=Mn, y)XT;,
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and we get a straightforward contradiction with (iii). Considering (iii),
(iv), it is now easy to find that ¢, d, e € M such that {(e, ¢), (d, e}}:Cs,
a contradiction.

(2)IMn Gl < 1. If x and y are two different elements of M N G, then
by (iv) e‘ther ((x, y),a;) € M or (( y, x),a;) € M, and consequently
(x, 3) X T; € M, which is impossible by (1).

Letx€MNR; % T;, y€ M N R; X T}, i #j. Then it follows from (ii),
(iii) and (1) that M = S. It is also easy to see that (M N R; X T;1 < 1. The
rernaining case IM N Gl =1, IM n R; X T} = 1 is also impossible. Hence
is a simple tournament.

Secondly, we prove A(dS) =~ G. Let f € 4(S). By Lemma 10, it suffices
to prove f(G) = G and fi(x, y) X T)) = (f(x), f(»)) X T;.

‘Claim. For every x € G and every i = 0, |, ..., k, there exists x # YE G
such that (. x) € R; ((x, y) € R;, respectively). For i > 0, this is clear.
For i = 0, note that since G is an odd group, x~1y # y~Ix forany y € G,
¥ # x. Hence either (x, y) € Ry or (y, x) € Ry . This establishes the claim.

Leta € Ry X Ty. Then
whila 3
d*(b,3)> IRyl 1Tyl +1Tyl

for every b€ R; X T, i > 0. Taking a sufficiently large 7, (see Section
2), we have

f(RyX To)C GU (Ry X T).
Leta€ R X T;, i 1, and let SR, X T))~ G U (R; X T forall
j < i. Then
d*@,S)<IGI+ L [IR; X Tjl:i>j},
while
d*(b,S)> 23 {\Rj 1T}l < k} + 1Ty

for every b & Ry X Ty, k> i. Thus, if we choose the cardinalities of T,
appropriately, we may casily obtain

fR; X T)CGUR; X T;).
Moreover, f(G) C G asf(g) € R; X T, implies (f(g), f{a)) € s

€,€ fla), j(g)) € s, respectively) for at least iT,) vertices a from each
(x, ¥} % T3, i > i (i <, respectively) (see (:1), (iv)). Furthes,
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f((x, y) X T;) = (x". y') X T; as the tournament &|g,¢ fails to be simple.
From (iv) and (v) it is easy to prove that f((x, y) X 7}) = (f(x}, (YN X T;.

We now turn our attention to the lattice of all congruences of a tour-
nament.

Proposition 11. Let L be an admissible lattice. Then there exists a tour-
nament I such that E(7) =~ L and A(9) ={1}.

In fact this follows from the sufficiency part of the proof of The-
orcm A. There we proved by induction the existence of a toutnament 7
with £(7) =~ L for a given admissible lattice L. The induction step in-
volves sufficiently large simple tournaments and orderings. There exist
arbitrarily larg: rigid tournaments (Section 2), and every ordering has
the identity as its only automorphism. From this Proposition 11 fol-
lows.

In the proof of our main theorem we make use of the following
“doubling” construction. Let = (T, ) be a tournament. Denote by
29 the tournament with vertex-set 7 X {0, 1}, and with the following
set of arrows:

{0, D, (v, ):i=0,1,(x, y)E 13U {((x, ).(v,0): x # y}
U {((x, 0),(x,)):x€T}.

Proposition 12. Let G be an odd group. Then there exists a tournament
such that

(DAT)~ AQ2T) = G;

(2) both T and 2T are simple tournaments.

This follows from the construction of 29 and the proof of Proposi-
tion 10. It suffices to take in the proof of Proposition 10 simple tour-
naments 7; with a large number of 3-cycles (i.e., with homogeneous
degree s2quence).

Theorem 4. Let L be an admissible lattice, G an even group. Then there
exists a tournament T with A(9)~ G and E(T) == L.

Prooi. The theorem will be proved by the following triple-tovrnament
construction which allows us to use the results of Propositiors 11 and
12 simultaneously.
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Let &, 9 be tournaments. Define the tournament J » 29 on the set
Su T x {0, 1}) by the following set of arrows:

sy, x,0).yeSxeTiu{x 1),y).xeT, ye 8},

whete ¢' denotes the set of arrows of 2 9.

Now choose two tournaments § and 7 with the following properties:
E(S)= L, A{S)={1g}, A(T) =~ A(2TF) = G, and 27 are simple, and
St < i7'l. Then E(J # 29 ) ~ E(J) =~ L, since there is no non-trivial con-
gruence class of & * 27 which meets T X {0, 1}.

Since

d(x,d#27)<d (¥, S%29)

forevery x € TX {0} and every y ¢ T X {0}, we have
A(S ¢ 2T) > A(29) 2 G .

This completes the proof.

Remark. Using a simple induction argurent one can prove:

Lemma V1. Let T be a tournament. Then there is a simple tournament
& which contains 7 as a subtournament.

Hence with respect to the automorphisms and congruences there are
globally no “forbidden parts”.

Theorem 4'. Givern an admissible lattice L, un odd group G, and a tour-
nam-=nt I, there is a tournament & such that

7€, EQPS)~L and AS)~G.

S. Applications

5. 1. Universal algebras

An n-ary operation w which satisfies w(x, ..., X ) € {Xy, ..., Xp} 18
called 2 quasitrivinl algebra. Hence the tournaments are precisely the
binary commutative quasitrivial algebras. Of course, they do not form a
primitive class (variety). The question may be raised concerning the
smallest primitive class T of aigebras containing all finite tfournaments.
This is obviously the same as asking for all equations which tournaments
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satisfy. T clearly satisfies the equations x - x =x, x-y=y-x,
x-(x-v)=x-y and the equations derived from them. lt can easily be
proved that there are no other equations involving two variahles only.
However, we have found an infinite number of independent equations
which T satisfies. Put '

Al,k = ( ((le.'z )X3) ...)xk ;
Apik =G ((Ap_y X)) )2, 22,

Then the equation A4, , ; = A, ; is satisfied by ali tournaments with

< n vertices ror every £ 2 1 (this follows from the periodicity of the se-
quence Ay ;. A5k, .-). One.can easily find an example of a tournament
with more than n vertices which does not sitisfy an equatinn

Aptanr = Apy for asuitable & (e.g., k =2n’ + 1). Thus T is not gen-
erated by the tournaments with € 7 vertices.

On the other hand, the equations 4,1, , = A4, ,, n > 1, are satisfied
by every finite tournament. It can be proved easily that this set contains
an infinite independent system of equations. The following question is
unsolved: Can T be defined by a finite set of equations?

3. 2. Forcing of endomorphisms and automorphisms by degrees

Let d be a degree sequence of a tournament. Denote by [d] the set of
all tournaments with the degree sequence d. We say that a property P is
jorced by d if T has P for every T € [d]. Theorem 1 (Section 2) may
then be stated in the following way: there is no endomorphism except
¢onstants and automorphisms which riay be forced by a strong degree
sequence. We procezd to give a fuli discussion of the question of forcing
of automorphisms and endomorphisms by degrees. The characterizations
are quite simple.

First we show which non-identity automorphisms can be forced by a
degree sequence (recall the trivial fact that a homogeneous tournament
has a constant degrce sequence).

Theorem 1'. Let T=(T, t) he a tournament. Exactly ore of the follow-
ing cases must occur:

(1) There exists a tournament S such that A(S ) ={id}, end 7 and J
are degree-equ.ivalent.

(2) T is the homogeneous tournament with S vertices.

(3) T is the homoger ou: tournament with 3 vertices.
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(4) Tis not strong, and at least one of the compone:ts in the cycle
decompesition of T satisfies eitler (2) or (3).

Coroltary. The only groups which maj be forced by a degree sequence
are the identity and finite direct sums of cyclic groups of order 3 or 5.

Outline of the proof. We prove (1) by induction of |T| = n. Clea ly (2),
(3), (4) zive the complete solution of the case |T| < §.

Let n> 5. If 7 is a homogeneous tournament, then (1) holds. If 7 is
not strong and (4) does not hold, onc¢ can use the induction hypothesis
for every cycle components of <. Let 7 be strong. Let T= U,-’f_.l A;bea
disjoint union such that d"(x, 7)# d™(y, ) foranyx € A, y€ 4 jr
i # j. We can then apply the induction hypothesis to 7 | A (as T is strong,
we can assume that 9| A; is not a homogeneous tournament even when
i4i=3,5).

Thus Theorems 1 and 1’ solve the question of forcing of a non-trivial
automorphism and endomorphism. (The question of forcing of endo-
morphisms by a non-streng degree sequence is not interesting because it
is a consequence of Theorem 1.)

We szy that a degree sequence d is forcibly identical (FI) if
A(T)={id} for every 7 € [d]. Similarly, d is called forcibly simple (FS)
if 7 is a simple tournament for every 9 € [d]. We then have

Fl-Theorer. The following two statements are equivalent:
(1) d iv an Fl-degree sequence;
(2) no three elements of d are equal

FS-Theorem. The following two statements are equivalent:
(1} d is an FS-degree sequence;
(2)d€{(0),(0,1),(1,1,1),(2,2,2,2,2),3,3,3,3,3,3, 3)1.

In fact, the two theorems are related to each other, permitting us to
give a proof from which both statements will follow at the same time.

Proof. *’)bvieus;y, (2) = (1) in both theorems. The proof that (1) = (2)
will be split into three parts. Throughout the proof letd=(d,, ..., d,),
n > 2, ve a fixed degree sequence written in non-decreasing order.
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(I) There exists an i < n such 1hat

di"‘l:di+] or 4;[i_l=d[=d1’+1.

This is clear since

k
;Z—% 2:2-i> (2";1) for every k.

(II) Suppose that d; .y = d; + | for some i < n. Then there exists a tour-
nament T=({1, .., n}, ) € {d] such that d~ (i, 7) = d; and & congruence
n€ ET)withqlil={i,i+1}.

Proof. Let S =({1. ..., n},s) be a tournament withd~(i, ) =d, i=1 ... n.
We can write

{l,...m} —{ii+l}=VIPUAUS,

where _
V={x:{(x,(x,(+1)C s}, P={x:{G x),(i+]1,x)} C s},
A={x:{(i,x),(x,i+1])} C s}, S={x:{(x,),(+1,x)}Cs}.
Clearly, 141 = |S]. Let f:.4 - S be one-one. Put A =Za,, ..., a;}.
Suppose first that (i + 1, i) € 5. Define

gla;) =i i (a;. fla;)) €5, ] <k,
g(af) =ji+1 if(f(aj)sa,,-) €s < k.

Then (a, f(a),g(a)) is a 3-cycle in J for everv a € A, and, moicover,
a # a' implies that (a, f(a), g(a)) and @', f(d'),g(@')) are arrow-distinct
3-cycles. Now it is easy to prove that the tournameant

T = (ay, flay), g(ag)) ... (ay, fay), 8(ay)) (ay, flay), g(1 ) S

(see the proof of Theorem 1) satisfies (1I).
Secordly, if (i, i + 1) € s, there exists a cycle ir. S containing (i, i + 1),
and hence we can suppose (i + 1,i) € s.
(II1) Let d be ua strong degree sequence not belorging to
{(1,1,D, (2,2,2,2,2;,3,3,3,3,2,3,5).(2,2,2,3.3,5)}.
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Suppose tha: d; _y = d; = d; .y for some i < n. Then there exists a tour-
nament T=({1,...,n}. t)such thatd=(j. )= d;, 1 € j< n, and a con-
gruence 11 € E(F) with n{il = {i - 1,i,i + 1}.

Proof. Let 8= ({1, ..., n},5) be a tournament with d™(j, I) = d;. We
can assume that {(i, i+ 1), (i+1,i 1), (i — 1,i)} C 5. We can then write

{Len}—{i-1iit+1}=AVBUPUP UL, UV LUV UV,,
where
A={x:{{x, ), (0, i 1),(x, i+1)} C s},
B={x:{(ix),(-1,x)>{+1,x)}Cs},
Py={x:{(x, i~ 1),(ix){+1,x)}C s},
Py ={x:{(i—1,x), 0, 0),{i+1,x)} C s};
Py ={x: {(i - 1,x),0, x),(x,i +1)} C s};
Vo= {x:{(i1 — 1,.0),(Cc, i),{x,i+1)}Cs)};
Vi={x:{(x.i—1),¢ x),(x, i+1)}Cs};
Va={x:{(x,i-1),(x, 0),(+1,x)} C s}.
Clearly it suffices to prove that

2
m(a)=_EO;,P,-|~4-;V;,-s=o.
‘:

Let us suppose that d has the property that m(~5)> 0 is minimal among
ali tournaments withd~(j, ') = d; (this does not contradict the assump-
tion that (i — 1,4, i +1) is a 3-cycle). From the minimality we have:

((x,y)esforeveryxe b, yeV,;,i=0,1,2;

(2) there exists exactly cne k such that Vy, # @ and Py # 0.

Assume for example, V', # (3, Py # @. Then obviously P, = V. Suppose
[Vol > 2. and let x € Fy, y = V. Then (i, x, y) is a 3-cycle, and the tour-
rament &' = (i, x, y)d does not satisfy (2), and consequently m(d) is not
minimal. Hence [Vl = | Py = |. Put ¥ = {v}, Py = {p}. Consider the
tourrament d]{ bwon} - {i-1,i,i+1} = S. & does not contain a cycle con-
tairing p and v, for otherwise ~hasing of a triangle in S would yield a
tournament J' which violaies [ { %, and hence m(¢} would be not minimal.
We distinguish two cases.
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(a) There are vertices x, y of 3 such that {(v, x), (v, ), (x, ¥)} C 5. But
then we may assume v € A (3 being a strong tournament), and we may
consider the tournament (y, i, p) (. ¥, i - 1)d instead of & and we get
acycleind. -

(b) There are vertices x, y of & such that {(y, x), (¥, p), (x, )} C s.
This case can be handled similarly as (a).

Further it is clear that we must have either (a) or (b) whenever n > §.
Thus let 5 < n < 7, and suppose that neither (a) nor (b) holds. Then the
only possibilities foy d are the sequences (2,2,2,2,2),(2,2,2,3,3,3),
(3,3,3,3,3.3,3). This proves (J1II) and the Fi-Theorem. The FS-Theorem
follows by proving that (3.3,3,3,3,3,3) is a forcibly simple degree se-
quence. This is easy to check.

Remark on matrices. Tournaments are precisely those 0, 1-matrices which
are antisymmetric: g;; = 0= g;; = 1, a;; = 1. Every non-trivial homomor-
phism represernits a decomposition of a matrix into biocks. The FS-Theo-
rem asserts that with precisely four exceo.ions for any antisymmetric
0, 1-matrix (g; ;)i < there exists an antisymmezric 0, I-matrix (b; ;)i ;=
such that

(l) Eiai,f = E, bi,i:

(2) (b; ;) can be decomposed inte at least 2 blocks.

Remark on undirected graphs. It follows easily from the algorithm on
degree sequences of (undirected) graphs (see [4] ) that there are no non-
trivial degree sequences of graphs whick force the identity. This aspect
of forcing being simpler for ordinary graphs than for tournaments it
seems a very difficult guestion to characterize the degree sequences of .
asymmetric graphs. (In [4] these graphs are called identity graphs.)

5.3. Representation ¢f monoids

Consider the monoid H(T) of all endomorphisms of a tournament.
The fact that a given abstract monoid M is isomorphic to H(7) (i.e.,
that M has a represeniation) is very closelv related to the realization of
a certain permutation monoid. Put

C={ae€ M: ab = aforevery be M}.

Let (M, {L,: a € M}) be the regular representation of M by l:ft trans-
lations. Obviously, L,(€) < C for every a € M. Consider the permuta-
tion monoid (C, {LS: a & M}), where L is the restriction of L, to C.
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It is clear that H(F) ~ M if and only if H(F) = (C.{LS: a € M}). Thus

it seems to be a herd question 10 characterize those monoids which can
be represented as monoids of endomorphisms of a certain tournament.
Nevertheless, one can say more about the structure of representable
moncids. Let H'(9)= H(J) -- " Consider any maximal group G con-
tained in H'(J). Such a group is generated by an idempotent element

f. < f=f. On the other hand, 7 is isomorphic to the group of all auto-
morp tisms of the tournamenst on the set f(¥). Thus we have a necessary
condition: every maximal grou» in M - Cis an ever group.

5.4. The number of simple and rigid tournaments

Let 7(n) (S(n). respectively; Jenote the number of all non-isomorphic
tournaments (simple tournaments, respectively) with » vertices. The fol-
lowing i< true:

Theorem 5.

,,lfi‘l T(n)

=1,
Proef. We have according tc the simple decomposition:
n :‘:‘ n-1

T(n) - S{n) < kZ_JZ ST —k+1)< 2;2 T(k)Tin -k +1).

Wz employ the following incquality which holds for every k, 2< k< n -1,
2(15)2("-—%4-1) B :TZ!'”E!)

k'(n—-k+1)!  (n-1)!

ar:id the bounds

'(3’) , ')(g) A f2
-2-;— < 7T(n) < ——
n! n

which follows from [8]. Then

T(n) - Stn) . _n! e a5 2" I 2/ n-kenin2

Ty ny k=2 K k+1)T

n3

., o Femmmans e e - »

yn-3)02
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This proves the statement. Hence almost all tournaments are simple ir-
reducible.

Let A{n) be the nu:nber of all non-isomorphic tournaments 7 with »
vertices and A(Y) = {17} (i.e., asymmetric tournaments, see [3]). Let
R(n) be the number of all non-isomorphic rigid tournaments with »
vertices.

Then we have again:

Theorem 6.

lim AW =y R

A T Jim 2 oa=1.

We have ar:alogously as above

n

T(n) - A(n) < ’?33 26-D120 1y Tn—-k)< 272 T(n—-3) (n -3).

k odd

Using the beunds for T(n) from [8]), we get lim,, , .. (T(n) —A(n))/T(n)=0.
The second part of the statement follows from the fact that

T(rn) - RS T(n)+(A(n)+S5(n)).

Hence almost all tournaments are rigid.

The numnber S(n) grows rapidly. Table 1 gives the first few values of
S(n). The values S(n) were compnted using a method involving three re-
cursive formulas. This will be discussed in a separate paper.

A3505 i AS68 A3507

n S T(n) R(n)
1 1 1 1
2 1 1 1
3 1 2 0
4 0 4 0
5 3 12 2
6 15 56 13
7 203 456 199
8 3785 6880 3773
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