[go: up one dir, main page]

login
A003473
Generalized Euler phi function (for p=2).
(Formerly M0875)
11
1, 2, 3, 8, 15, 24, 49, 128, 189, 480, 1023, 1536, 4095, 6272, 10125, 32768, 65025, 96768, 262143, 491520, 583443, 2095104, 4190209, 6291456, 15728625, 33546240, 49545027, 102760448, 268435455, 331776000, 887503681, 2147483648, 3211797501, 8522956800, 12325233375, 25367150592, 68719476735, 137438429184, 206007472125
OFFSET
1,2
COMMENTS
a(n) is the number of n X n circulant invertible matrices over GF(2). - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 20 2003
From Geoffrey Critzer, Oct 13 2024: (Start)
a(n) is the number of units in the ring F_2[x]/<x^n-1>.
Let T be the companion matrix of x^n-1 and let M_T be the F_2[x] module induced by T where the action is f*v = f(T)v. Then a(n) is the number of cyclic vectors in M_T.
a(n) is the number of elements in M_T whose local minimal polynomial is x^n-1.
a(n) is the order of the stabilizer subgroup of T under the action of conjugation.
a(n) is the number of polynomials f(x) in F_2[x] of degree < n such that
gcd(x^n-1,f(x)) = 1.
a(n) is the number of normal elements in the field F_2^n. (End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. T. B. Beard Jr. and K. I. West, Factorization tables for x^n-1 over GF(q), Math. Comp., 28 (1974), 1167-1168.
Swee Hong Chan, Henk D. L. Hollmann, and Dmitrii V. Pasechnik, Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields, arXiv:1405.0113 [math.CO], (1-May-2014).
FORMULA
a(n) = n * A027362(n). - Vladeta Jovovic, Sep 09 2003
MATHEMATICA
p = 2; numNormalp[n_] := Module[{r, i, pp}, pp = 1; Do[r = MultiplicativeOrder[p, d]; i = EulerPhi[d]/r; pp *= (1 - 1/p^r)^i, {d, Divisors[n]}]; Return[pp]]; numNormal[n_] := Module[{t, q, pp }, t = 1; q = n; While[0 == Mod[q, p], q /= p; t += 1]; pp = numNormalp[q]; pp *= p^n/n; Return[pp]]; a[n_] := n*numNormal[n]; Array[a, 40] (* Jean-François Alcover, Dec 10 2015, after Joerg Arndt *)
PROG
(PARI)
p=2; /* global */
num_normal_p(n)=
{
my( r, i, pp );
pp = 1;
fordiv (n, d,
r = znorder(Mod(p, d));
i = eulerphi(d)/r;
pp *= (1 - 1/p^r)^i;
);
return( pp );
}
num_normal(n)=
{
my( t, q, pp );
t = 1; q = n;
while ( 0==(q%p), q/=p; t+=1; );
/* here: n==q*p^t */
pp = num_normal_p(q);
pp *= p^n/n;
return( pp );
}
a(n)=n * num_normal(n);
v=vector(66, n, a(n)) /* Joerg Arndt, Jul 03 2011 */
CROSSREFS
Cf. A003474 (p=3), A192037 (p=5).
Cf. also A086479, A027362.
Sequence in context: A356371 A293389 A128035 * A095373 A249357 A291400
KEYWORD
nonn
EXTENSIONS
More terms from Vladeta Jovovic, Sep 09 2003
Terms > 331776000 from Joerg Arndt, Jul 03 2011
STATUS
approved