[go: up one dir, main page]

login
A003301
Numerators of coefficients of Green function for cubic lattice.
(Formerly M1907)
1
1, 2, 8, 496, 9088, 12032, 12004352, 4139008, 51347456, 378357612544, 4097254359040, 2921482158080, 9353679601664, 4929181267787776, 5689554887507968, 41627810786525052928, 37882178449895849984
OFFSET
0,2
REFERENCES
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. S. Joyce and R. T. Delves, Exact product forms for the simple cubic lattice Green function: I, J Phys A: Math Gen 37 (2004) 3645-3671
FORMULA
9(n+1)(2n+1)(2n+3)*a(n+1)/A003302(n+1)-2(2n+1)(10n^2+10n+3)a(n)/A003302(n)+4n^3*a(n-1)/A003302(n-1) = 0. - R. J. Mathar, Dec 08 2005
MAPLE
Dnminus1 := 1 : print(numer(Dnminus1)) ; Dn := 2/9 : print(numer(Dn)) ; for nplus1 from 2 to 20 do n := nplus1-1 : Dnplus1 := (2*(2*n+1)*(10*n^2+10*n+3)*Dn-4*n^3*Dnminus1)/(9*nplus1*(2*n+1)*(2*n+3)) : print(numer(Dnplus1)) ; Dnminus1 := Dn : Dn := Dnplus1 : od : # R. J. Mathar
CROSSREFS
Cf. A003302.
Sequence in context: A284603 A329685 A323863 * A000890 A033542 A098870
KEYWORD
nonn,easy,frac
EXTENSIONS
More terms from R. J. Mathar, Dec 08 2005
STATUS
approved