OFFSET
1,4
COMMENTS
The g.f. (1-z**2-2*z**3-8*z**4+7*z**5+4*z**6)/(1-z-z**2-2*z**3-6*z**4+14*z**5) was conjectured by Simon Plouffe in his 1992 dissertation, but this is incorrect.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..3770 (terms 1..73 from Herman Jamke)
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335.
F. Harary and R. W. Robinson, The number of achiral trees, J. Reine Angew. Math., 278 (1975), 322-335. (Annotated scanned copy)
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
FORMULA
a(n) ~ c * d^n, where d = 1.8332964415228533737988849634129366404833316666328290543862325494628120733... is the root of the equation Sum_{k>=1} A000081(k) / d^(2*k-1) = 1 and c = 0.123308773712306885475561730669251048497115967922743533462465528423705228... - Vaclav Kotesovec, Dec 13 2020
PROG
(PARI) t(n)=local(A=x); if(n<1, 0, for(k=1, n-1, A/=(1-x^k+x*O(x^n))^polcoeff(A, k)); polcoeff(A, n)) {n=100; Ty2=sum(i=0, n, t(i)*y^(2*i)); p=subst(y*Ty2/(y-Ty2), y, y+y*O(y^n)); p=Pol(p, y); a=subst(Ty2*(y+p+(p^2-subst(p, y, y^2))/(2*y))/y^2-(p^2+subst(p, y, y^2))/(2*y^2)+Ty2, y, x+x*O(x^n)); for(i=0, n-2, print1(polcoeff(a, i)", "))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 26 2008
STATUS
approved