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The Loschian Numbers As a Problem in Number Theory
John U. Marshall*

In that part of Losch’s work that can be taken as a contribution to
central place theory [10, pp. 101-37], the “size” of a good’s market
area is conventionally measured by the number of complete farms it
contains. In practice, since both farms and market areas are hexagons,
fractions of farms are encountered, but in every permissible case these
fractions sum to a whole number, and hence the size of each market
area is always an integer. The complete set of these integers, here
denoted by @, may be termed the Lodschian market-area numbers or
simply the Lodschian numbers. Individual members of @ are here de-
noted by N.

Elementary geometry shows that the Loschian numbers can be gen-
erated systematically by the function

Q=x%+xy+y?,

where x and y are nonnegative integers and x < y [4, 5, 12]. An im-
portant point overlooked in the literature is that this function does not
directly generate values of N. Rather it produces values of D? where D
denotes the distance between neighboring suppliers of the same good.
Fortunately the values of D* and N are one and the same; that is, for
any particular good

D? =N.
Losch [10, pp. 117-18], without giving proof, stated this relationship

in the form

*I am grateful for the constructive comments of Eugene Denzel of the depart-
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D =d+/N,

where d is the distance, here taken as unity, between adjacent farm-
steads. The proof is a straightforward exercise in the geometry of the
standard triangular lattice.

Between N = 1 (taken to represent self-sufficiency at each farmstead)
and N =10,000 inclusive, there occur 2,299 Loschian numbers. An
examination of these numbers, and of the non-Loschian numbers that
surround them, prompts the conjecture that a given integer is Loschian
if, and only if, its prime factorization satisfies the condition that the
prime number 2 and all primes of the form (6k - 1), if present, have
even powers. Other primes, namely 3 and all primes of the form
(6k + 1), may be present with any power; their presence or absence is
immaterial to the question of whether or not a given integer is Loschian.
This note outlines a proof of this conjecture. The reasoning requires a
knowledge of Legendre symbols and Gauss’s law of quadratic reciproc-
ity, concepts that are explained in standard number-theory texts [2, 3,
6,8,9,11].

The Proof

Let d be the greatest common divisor of the integers x and y in
(x? + xy +y?). Then x = ds and y = dt, where s and ¢ are integers whose
greatest common divisor is 1. Thus,

(x* +xy +y*) = (ds)* + (ds)(dt) + (dt)’

=d?(s* +st+ 7).

The square d* cannot contain any odd-powered prime factors and may
henceforth be ignored. The problem is thus immediately reduced to
that of proving that the number (s* + st + t?), in which the greatest
common divisor of s and t is 1, is not divisible by an odd power of 2 or
of any prime of the form (6% - 1).

Let p" denote any prime factor of (s +st+t?). Then p” divides
(s* + st + t?) without remainder, and it is required to show that n must
be even for p = 2 and p = (6k - 1).

Suppose p =2, n=1, so that p” = 2. Since the greatest common
divisor of s and t is 1, s and t cannot both be even numbers. But if
either s or ¢t is odd, or if both are odd, then (s*> + st + t?) is also odd and
thus not divisible by 2. Thus, by reductio ad absurdum, p" # 2.

A number of the form (x? + xy + y?), where the greatest common
divisor of x and y is greater than 1, may well be divisible by 2" where n
is even. With n even, 2" is clearly a square and may be written as r?.
Then it is apparent that

r2(s? + st + t2) = (rs)* + (rs)(rt) + (rt)?,
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which may be written as (x?> + xy + y%). In short a number of this
general form may be divisible by an even power of 2. An odd power of
2, however, cannot be wholly accommodated in the square r? ; there is
always a unit-powered 2 left over, and the argument of the preceding
paragraph then applies.

Exactly the same reasoning holds for any prime p for which, given
that the greatest common divisor of s and t is 1, the number
(s* + st + t?) is not divisible by p™ when n = 1. Therefore the remainder
of the proof need only show that (s* + st + ¢?) is not divisible by the
first power of any prime of the form (6k - 1).

With p prime such that p" divides (s* + st + t*), note that (s? + st +
t?) = kp, where k is some integer. Divide through by t*> to obtain

SRONE

Using the standard formula for the roots of a quadratic equation, this

yields
-1z 1-4 (1 - @)

s\ _ t?
t 2 ’

(2s + t)® + 3t% = 4kp

whence

The left-hand side of this equation may be written as a congruence,
modulo p:

(2s + t)® = - 3t (mod p)

Since (2s + t)? is a square, - 3t? is a quadratic residue of p. In terms of

Legendre symbols,
_ 2 _ t2
(-0RE o
p p p p

The next step is to evaluate the Legendre symbols at the right of this
equation. There obviously exists some x such that p divides (x? - &%),
and hence (t*/p)=+1. Evaluating the term (-1/p) is not quite so
simple. With p having the form (6% - 1), two cases must be considered:
k odd and k even. The former is presented as an example. To evaluate

(-1/p), the standard rule is
C1)=01W,
p
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where B=4(p-1). For p=(6k- 1), B=4(6k-1-1)=(8k- 1).
With k odd, (3k - 1) is even, thus (- 1/p) = +1.

With (¢2/p) = +1 and (-1/p) = +1, it follows from equation (1) that
(3/p) = +1. Now consider the two primes in the Legendre symbol (3/p)
and note that 3 = 3(mod 4), whereas p = (6k - 1), with k odd, implies
that p = 1(mod 4). Therefore, by the law of quadratic reciprocity,

(55

Now, still supposing p = (6k - 1), consider the congruence x? =
p(mod 3). Substitute p = (6k - 1) to obtain x? = (6k - 1)(mod 3).
Since 3 divides 6k, this in turn may be written as x*> = -1(mod 3),
which is equivalent to x* = 2(mod 3). By inspection, there is no integer
x that satisfies this congruence. In other words, no prime of the form
(6k - 1) is a quadratic residue of 3. Thus (p/3) =-1. However, this
contradicts the law of quadratic reciprocity as expressed in equation
(2). Therefore, by reductio ad absurdum, p # (6% - 1) with k& odd.

Application of the same line of reasoning to cases where k is even
leads, by a slightly different route, to the parallel conclusion that
p # (6k - 1) with k even. This completes the proof.

The procedures used to prove the inadmissibility of primes of the
form (6k - 1) may equally be used to demonstrate the acceptability of
primes of the form (6k + 1). The remaining case of p =3 is trivial,
since it is obvious without any calculation that - 3 behaves as a quadratic
residue of 3. The key to the whole problem lies in the fact that -3 is a
quadratic residue of primes of the form (6% + 1) and a quadratic non-
residue of primes of the form (6k - 1). This fact is proved in modern
texts [8, p. 75; 3, pp. 74-75] and was indeed known to Gauss [7,
p. 77]. However, the relationship between this result and the problem
of characterizing the Loschian numbers is not instantaneously obvious.

The argument above proves that the prime factorization of any
Loschian number N does not contain an odd power of 2 or of any
prime of the form (6% - 1). Using similar methods, it is also possible to
prove the converse: an integer having a prime factorization such that 2
and primes of the form (6& - 1), if present, have even powers, whereas
3 and primes of the form (6k + 1) have any power, is of the form
(x* +xy +y?). A strong conclusion is thus reached. Not only does
every Loschian number have a certain type of prime factorization, but
also every integer with that type of prime factorization is a Loschian
number.

Implications

Given the above findings, several corollaries follow immediately.
Corollary 1. There are infinitely many Loschian numbers, and hence
an infinite number of theoretically possible market-area sizes.

J
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Corollary 2. Given that odd and even integers are equally numerous,
the probability that a Léschian number is odd is 0.75, and the proba-
bility that it is even is 0.25. This follows from the fact that (x? +
xy + y?) is even only if x and y are both even.

Corollary 3. The greatest common divisor and the least common
multiple of any two or more Loschian numbers are also Loschian num-
bers.

Corollary 4. The product of two Lodschian numbers is always a
Loéschian number.

Corollary 5. The product of a Loschian number and a non-Loschian
number is never a Loschian number.

Corollary 6. The product of two non-Loéschian numbers is sometimes
Loschian and sometimes not.

The general theorem itself may be used to answer the question of
whether or not any given integer is Loschian. The integer must first be
reduced to its prime factors, a step that is facilitated by the use of pub-
lished factor tables [1, pp. 844-63]. Then, if 2 or any prime of the
form (6k - 1) is present with an odd power, the number is not Loschian;
otherwise, it is Loschian. Is 2,691 a Loschian number? No: its prime
factorization is 3% - 13 - 23, and 23 has the form (6k - 1) with an odd
power. Is 2,692 Loschian? Yes: its factors are 22 - 673. In this way the
admissibility of any number may rapidly be established.

Transferred from the realm of number theory to Losch’s isotropic
plain, the terms x and y in (x* +xy + y2) have concrete expression as
grid coordinates giving the location of a supplier relative to the origin at
the central metropolis [12, pp. 114-16]. Given that N is a Loschian
number, it would therefore be of interest to know the corfesponding
values of x and y. These values can of course be found iteratively, but a
quicker method is desirable. Given the value of N, the need is for a
general formula to extract solutions to the Diophantine equation
N =(x? +xy +y?). An attack on this problem has so far been unsuc-
cessful, but it may be premature to conjecture that the problem is
insoluble.
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